Spaces:
Runtime error
Runtime error
import torch.nn as nn | |
class Bottleneck(nn.Module): | |
expansion = 4 | |
def __init__( | |
self, inplanes, planes, stride=1, dilation=1, downsample=None, BatchNorm=None | |
): | |
super(Bottleneck, self).__init__() | |
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) | |
self.bn1 = BatchNorm(planes) | |
self.conv2 = nn.Conv2d( | |
planes, | |
planes, | |
kernel_size=3, | |
stride=stride, | |
dilation=dilation, | |
padding=dilation, | |
bias=False, | |
) | |
self.bn2 = BatchNorm(planes) | |
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) | |
self.bn3 = BatchNorm(planes * 4) | |
self.relu = nn.ReLU(inplace=True) | |
self.downsample = downsample | |
self.stride = stride | |
self.dilation = dilation | |
def forward(self, x): | |
residual = x | |
out = self.conv1(x) | |
out = self.bn1(out) | |
out = self.relu(out) | |
out = self.conv2(out) | |
out = self.bn2(out) | |
out = self.relu(out) | |
out = self.conv3(out) | |
out = self.bn3(out) | |
if self.downsample is not None: | |
residual = self.downsample(x) | |
out += residual | |
out = self.relu(out) | |
return out | |
class ResNet(nn.Module): | |
def __init__( | |
self, block, layers, output_stride, BatchNorm, verbose=0, no_init=False | |
): | |
self.inplanes = 64 | |
self.verbose = verbose | |
super(ResNet, self).__init__() | |
blocks = [1, 2, 4] | |
if output_stride == 16: | |
strides = [1, 2, 2, 1] | |
dilations = [1, 1, 1, 2] | |
elif output_stride == 8: | |
strides = [1, 2, 1, 1] | |
dilations = [1, 1, 2, 4] | |
else: | |
raise NotImplementedError | |
# Modules | |
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) | |
self.bn1 = BatchNorm(64) | |
self.relu = nn.ReLU(inplace=True) | |
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) | |
self.layer1 = self._make_layer( | |
block, | |
64, | |
layers[0], | |
stride=strides[0], | |
dilation=dilations[0], | |
BatchNorm=BatchNorm, | |
) | |
self.layer2 = self._make_layer( | |
block, | |
128, | |
layers[1], | |
stride=strides[1], | |
dilation=dilations[1], | |
BatchNorm=BatchNorm, | |
) | |
self.layer3 = self._make_layer( | |
block, | |
256, | |
layers[2], | |
stride=strides[2], | |
dilation=dilations[2], | |
BatchNorm=BatchNorm, | |
) | |
self.layer4 = self._make_MG_unit( | |
block, | |
512, | |
blocks=blocks, | |
stride=strides[3], | |
dilation=dilations[3], | |
BatchNorm=BatchNorm, | |
) | |
def _make_layer(self, block, planes, blocks, stride=1, dilation=1, BatchNorm=None): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d( | |
self.inplanes, | |
planes * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
bias=False, | |
), | |
BatchNorm(planes * block.expansion), | |
) | |
layers = [] | |
layers.append( | |
block(self.inplanes, planes, stride, dilation, downsample, BatchNorm) | |
) | |
self.inplanes = planes * block.expansion | |
for i in range(1, blocks): | |
layers.append( | |
block(self.inplanes, planes, dilation=dilation, BatchNorm=BatchNorm) | |
) | |
return nn.Sequential(*layers) | |
def _make_MG_unit( | |
self, block, planes, blocks, stride=1, dilation=1, BatchNorm=None | |
): | |
downsample = None | |
if stride != 1 or self.inplanes != planes * block.expansion: | |
downsample = nn.Sequential( | |
nn.Conv2d( | |
self.inplanes, | |
planes * block.expansion, | |
kernel_size=1, | |
stride=stride, | |
bias=False, | |
), | |
BatchNorm(planes * block.expansion), | |
) | |
layers = [] | |
layers.append( | |
block( | |
self.inplanes, | |
planes, | |
stride, | |
dilation=blocks[0] * dilation, | |
downsample=downsample, | |
BatchNorm=BatchNorm, | |
) | |
) | |
self.inplanes = planes * block.expansion | |
for i in range(1, len(blocks)): | |
layers.append( | |
block( | |
self.inplanes, | |
planes, | |
stride=1, | |
dilation=blocks[i] * dilation, | |
BatchNorm=BatchNorm, | |
) | |
) | |
return nn.Sequential(*layers) | |
def forward(self, input): | |
x = self.conv1(input) | |
x = self.bn1(x) | |
x = self.relu(x) | |
x = self.maxpool(x) | |
x = self.layer1(x) | |
low_level_feat = x | |
x = self.layer2(x) | |
x = self.layer3(x) | |
x = self.layer4(x) | |
return x, low_level_feat | |
def ResNet101(output_stride=8, BatchNorm=nn.BatchNorm2d, verbose=0, no_init=False): | |
"""Constructs a ResNet-101 model. | |
Args: | |
pretrained (bool): If True, returns a model pre-trained on ImageNet | |
""" | |
model = ResNet( | |
Bottleneck, | |
[3, 4, 23, 3], | |
output_stride, | |
BatchNorm, | |
verbose=verbose, | |
no_init=no_init, | |
) | |
return model | |