"""All non-tensor utils """ import contextlib import datetime import json import os import re import shutil import subprocess import time import traceback from os.path import expandvars from pathlib import Path from typing import Any, List, Optional, Union from uuid import uuid4 import numpy as np import torch import yaml from addict import Dict from comet_ml import Experiment comet_kwargs = { "auto_metric_logging": False, "parse_args": True, "log_env_gpu": True, "log_env_cpu": True, "display_summary_level": 0, } IMG_EXTENSIONS = set( [".jpg", ".JPG", ".jpeg", ".JPEG", ".png", ".PNG", ".ppm", ".PPM", ".bmp", ".BMP"] ) def resolve(path): """ fully resolve a path: resolve env vars ($HOME etc.) -> expand user (~) -> make absolute Returns: pathlib.Path: resolved absolute path """ return Path(expandvars(str(path))).expanduser().resolve() def copy_run_files(opts: Dict) -> None: """ Copy the opts's sbatch_file to output_path Args: opts (addict.Dict): options """ if opts.sbatch_file: p = resolve(opts.sbatch_file) if p.exists(): o = resolve(opts.output_path) if o.exists(): shutil.copyfile(p, o / p.name) if opts.exp_file: p = resolve(opts.exp_file) if p.exists(): o = resolve(opts.output_path) if o.exists(): shutil.copyfile(p, o / p.name) def merge( source: Union[dict, Dict], destination: Union[dict, Dict] ) -> Union[dict, Dict]: """ run me with nosetests --with-doctest file.py >>> a = { 'first' : { 'all_rows' : { 'pass' : 'dog', 'number' : '1' } } } >>> b = { 'first' : { 'all_rows' : { 'fail' : 'cat', 'number' : '5' } } } >>> merge(b, a) == { 'first' : { 'all_rows' : { ' pass' : 'dog', 'fail' : 'cat', 'number' : '5' } } } True """ for key, value in source.items(): try: if isinstance(value, dict): # get node or create one node = destination.setdefault(key, {}) merge(value, node) else: if isinstance(destination, dict): destination[key] = value else: destination = {key: value} except TypeError as e: print(traceback.format_exc()) print(">>>", source) print(">>>", destination) print(">>>", key) print(">>>", value) raise Exception(e) return destination def load_opts( path: Optional[Union[str, Path]] = None, default: Optional[Union[str, Path, dict, Dict]] = None, commandline_opts: Optional[Union[Dict, dict]] = None, ) -> Dict: """Loadsize a configuration Dict from 2 files: 1. default files with shared values across runs and users 2. an overriding file with run- and user-specific values Args: path (pathlib.Path): where to find the overriding configuration default (pathlib.Path, optional): Where to find the default opts. Defaults to None. In which case it is assumed to be a default config which needs processing such as setting default values for lambdas and gen fields Returns: addict.Dict: options dictionnary, with overwritten default values """ if path is None and default is None: path = ( resolve(Path(__file__)).parent.parent / "shared" / "trainer" / "defaults.yaml" ) if path: path = resolve(path) if default is None: default_opts = {} else: if isinstance(default, (str, Path)): with open(default, "r") as f: default_opts = yaml.safe_load(f) else: default_opts = dict(default) if path is None: overriding_opts = {} else: with open(path, "r") as f: overriding_opts = yaml.safe_load(f) or {} opts = Dict(merge(overriding_opts, default_opts)) if commandline_opts is not None and isinstance(commandline_opts, dict): opts = Dict(merge(commandline_opts, opts)) if opts.train.kitti.pretrained: assert "kitti" in opts.data.files.train assert "kitti" in opts.data.files.val assert opts.train.kitti.epochs > 0 opts.domains = [] if "m" in opts.tasks or "s" in opts.tasks or "d" in opts.tasks: opts.domains.extend(["r", "s"]) if "p" in opts.tasks: opts.domains.append("rf") if opts.train.kitti.pretrain: opts.domains.append("kitti") opts.domains = list(set(opts.domains)) if "s" in opts.tasks: if opts.gen.encoder.architecture != opts.gen.s.architecture: print( "WARNING: segmentation encoder and decoder architectures do not match" ) print( "Encoder: {} <> Decoder: {}".format( opts.gen.encoder.architecture, opts.gen.s.architecture ) ) if opts.gen.m.use_spade: if "d" not in opts.tasks or "s" not in opts.tasks: raise ValueError( "opts.gen.m.use_spade is True so tasks MUST include" + "both d and s, but received {}".format(opts.tasks) ) if opts.gen.d.classify.enable: raise ValueError( "opts.gen.m.use_spade is True but using D as a classifier" + " which is a non-implemented combination" ) if opts.gen.s.depth_feat_fusion is True or opts.gen.s.depth_dada_fusion is True: opts.gen.s.use_dada = True events_path = ( resolve(Path(__file__)).parent.parent / "shared" / "trainer" / "events.yaml" ) if events_path.exists(): with events_path.open("r") as f: events_dict = yaml.safe_load(f) events_dict = Dict(events_dict) opts.events = events_dict return set_data_paths(opts) def set_data_paths(opts: Dict) -> Dict: """Update the data files paths in data.files.train and data.files.val from data.files.base Args: opts (addict.Dict): options Returns: addict.Dict: updated options """ for mode in ["train", "val"]: for domain in opts.data.files[mode]: if opts.data.files.base and not opts.data.files[mode][domain].startswith( "/" ): opts.data.files[mode][domain] = str( Path(opts.data.files.base) / opts.data.files[mode][domain] ) assert Path( opts.data.files[mode][domain] ).exists(), "Cannot find {}".format(str(opts.data.files[mode][domain])) return opts def load_test_opts(test_file_path: str = "config/trainer/local_tests.yaml") -> Dict: """Returns the special opts set up for local tests Args: test_file_path (str, optional): Name of the file located in config/ Defaults to "local_tests.yaml". Returns: addict.Dict: Opts loaded from defaults.yaml and updated from test_file_path """ return load_opts( Path(__file__).parent.parent / f"{test_file_path}", default=Path(__file__).parent.parent / "shared/trainer/defaults.yaml", ) def get_git_revision_hash() -> str: """Get current git hash the code is run from Returns: str: git hash """ try: return subprocess.check_output(["git", "rev-parse", "HEAD"]).decode().strip() except Exception as e: return str(e) def get_git_branch() -> str: """Get current git branch name Returns: str: git branch name """ try: return ( subprocess.check_output(["git", "rev-parse", "--abbrev-ref", "HEAD"]) .decode() .strip() ) except Exception as e: return str(e) def kill_job(id: Union[int, str]) -> None: subprocess.check_output(["scancel", str(id)]) def write_hash(path: Union[str, Path]) -> None: hash_code = get_git_revision_hash() with open(path, "w") as f: f.write(hash_code) def shortuid(): return str(uuid4()).split("-")[0] def datenowshort(): """ >>> a = str(datetime.datetime.now()) >>> print(a) '2021-02-25 11:34:50.188072' >>> print(a[5:].split(".")[0].replace(" ", "_")) '02-25_11:35:41' Returns: str: month-day_h:m:s """ return str(datetime.datetime.now())[5:].split(".")[0].replace(" ", "_") def get_increased_path(path: Union[str, Path], use_date: bool = False) -> Path: """Returns an increased path: if dir exists, returns `dir (1)`. If `dir (i)` exists, returns `dir (max(i) + 1)` get_increased_path("test").mkdir() creates `test/` then get_increased_path("test").mkdir() creates `test (1)/` etc. if `test (3)/` exists but not `test (2)/`, `test (4)/` is created so that indexes always increase Args: path (str or pathlib.Path): the file/directory which may already exist and would need to be increased Returns: pathlib.Path: increased path """ fp = resolve(path) if not fp.exists(): return fp if fp.is_file(): if not use_date: while fp.exists(): fp = fp.parent / f"{fp.stem}--{shortuid()}{fp.suffix}" return fp else: while fp.exists(): time.sleep(0.5) fp = fp.parent / f"{fp.stem}--{datenowshort()}{fp.suffix}" return fp if not use_date: while fp.exists(): fp = fp.parent / f"{fp.name}--{shortuid()}" return fp else: while fp.exists(): time.sleep(0.5) fp = fp.parent / f"{fp.name}--{datenowshort()}" return fp # vals = [] # for n in fp.parent.glob("{}*".format(fp.stem)): # if re.match(r".+\(\d+\)", str(n.name)) is not None: # name = str(n.name) # start = name.index("(") # end = name.index(")") # vals.append(int(name[start + 1 : end])) # if vals: # ext = " ({})".format(max(vals) + 1) # elif fp.exists(): # ext = " (1)" # else: # ext = "" # return fp.parent / (fp.stem + ext + fp.suffix) def env_to_path(path: str) -> str: """Transorms an environment variable mention in a json into its actual value. E.g. $HOME/clouds -> /home/vsch/clouds Args: path (str): path potentially containing the env variable """ path_elements = path.split("/") new_path = [] for el in path_elements: if "$" in el: new_path.append(os.environ[el.replace("$", "")]) else: new_path.append(el) return "/".join(new_path) def flatten_opts(opts: Dict) -> dict: """Flattens a multi-level addict.Dict or native dictionnary into a single level native dict with string keys representing the keys sequence to reach a value in the original argument. d = addict.Dict() d.a.b.c = 2 d.a.b.d = 3 d.a.e = 4 d.f = 5 flatten_opts(d) >>> { "a.b.c": 2, "a.b.d": 3, "a.e": 4, "f": 5, } Args: opts (addict.Dict or dict): addict dictionnary to flatten Returns: dict: flattened dictionnary """ values_list = [] def p(d, prefix="", vals=[]): for k, v in d.items(): if isinstance(v, (Dict, dict)): p(v, prefix + k + ".", vals) elif isinstance(v, list): if v and isinstance(v[0], (Dict, dict)): for i, m in enumerate(v): p(m, prefix + k + "." + str(i) + ".", vals) else: vals.append((prefix + k, str(v))) else: if isinstance(v, Path): v = str(v) vals.append((prefix + k, v)) p(opts, vals=values_list) return dict(values_list) def get_comet_rest_api_key( path_to_config_file: Optional[Union[str, Path]] = None ) -> str: """Gets a comet.ml rest_api_key in the following order: * config file specified as argument * environment variable * .comet.config file in the current working diretory * .comet.config file in your home config files must have a line like `rest_api_key=` Args: path_to_config_file (str or pathlib.Path, optional): config_file to use. Defaults to None. Raises: ValueError: can't find a file ValueError: can't find the key in a file Returns: str: your comet rest_api_key """ if "COMET_REST_API_KEY" in os.environ and path_to_config_file is None: return os.environ["COMET_REST_API_KEY"] if path_to_config_file is not None: p = resolve(path_to_config_file) else: p = Path() / ".comet.config" if not p.exists(): p = Path.home() / ".comet.config" if not p.exists(): raise ValueError("Unable to find your COMET_REST_API_KEY") with p.open("r") as f: for keys in f: if "rest_api_key" in keys: return keys.strip().split("=")[-1].strip() raise ValueError("Unable to find your COMET_REST_API_KEY in {}".format(str(p))) def get_files(dirName: str) -> list: # create a list of file and sub directories files = sorted(os.listdir(dirName)) all_files = list() for entry in files: fullPath = os.path.join(dirName, entry) if os.path.isdir(fullPath): all_files = all_files + get_files(fullPath) else: all_files.append(fullPath) return all_files def make_json_file( tasks: List[str], addresses: List[str], # for windows user, use "\\" instead of using "/" json_names: List[str] = ["train_jsonfile.json", "val_jsonfile.json"], splitter: str = "/", pourcentage_val: float = 0.15, ) -> None: """ How to use it? e.g. make_json_file(['x','m','d'], [ '/network/tmp1/ccai/data/munit_dataset/trainA_size_1200/', '/network/tmp1/ccai/data/munit_dataset/seg_trainA_size_1200/', '/network/tmp1/ccai/data/munit_dataset/trainA_megadepth_resized/' ], ["train_r.json", "val_r.json"]) Args: tasks (list): the list of image type like 'x', 'm', 'd', etc. addresses (list): the list of the corresponding address of the image type mentioned in tasks json_names (list): names for the json files, train being first (e.g. : ["train_r.json", "val_r.json"]) splitter (str, optional): The path separator for the current OS. Defaults to '/'. pourcentage_val: pourcentage of files to go in validation set """ assert len(tasks) == len(addresses), "keys and addresses must have the same length!" files = [get_files(addresses[j]) for j in range(len(tasks))] n_files_val = int(pourcentage_val * len(files[0])) n_files_train = len(files[0]) - n_files_val filenames = [files[0][:n_files_train], files[0][-n_files_val:]] file_address_map = { tasks[j]: { ".".join(file.split(splitter)[-1].split(".")[:-1]): file for file in files[j] } for j in range(len(tasks)) } # The tasks of the file_address_map are like 'x', 'm', 'd'... # The values of the file_address_map are a dictionary whose tasks are the # filenames without extension whose values are the path of the filename # e.g. file_address_map = # {'x': {'A': 'path/to/trainA_size_1200/A.png', ...}, # 'm': {'A': 'path/to/seg_trainA_size_1200/A.jpg',...} # 'd': {'A': 'path/to/trainA_megadepth_resized/A.bmp',...} # ...} for i, json_name in enumerate(json_names): dicts = [] for j in range(len(filenames[i])): file = filenames[i][j] filename = file.split(splitter)[-1] # the filename with 'x' extension filename_ = ".".join( filename.split(".")[:-1] ) # the filename without extension tmp_dict = {} for k in range(len(tasks)): tmp_dict[tasks[k]] = file_address_map[tasks[k]][filename_] dicts.append(tmp_dict) with open(json_name, "w", encoding="utf-8") as outfile: json.dump(dicts, outfile, ensure_ascii=False) def append_task_to_json( path_to_json: Union[str, Path], path_to_new_json: Union[str, Path], path_to_new_images_dir: Union[str, Path], new_task_name: str, ): """Add all files for a task to an existing json file by creating a new json file in the specified path. Assumes that the files for the new task have exactly the same names as the ones for the other tasks Args: path_to_json: complete path to the json file to modify path_to_new_json: complete path to the new json file to be created path_to_new_images_dir: complete path of the directory where to find the images for the new task new_task_name: name of the new task e.g: append_json( "/network/tmp1/ccai/data/climategan/seg/train_r.json", "/network/tmp1/ccai/data/climategan/seg/train_r_new.json" "/network/tmp1/ccai/data/munit_dataset/trainA_seg_HRNet/unity_labels", "s", ) """ ims_list = None if path_to_json: path_to_json = Path(path_to_json).resolve() with open(path_to_json, "r") as f: ims_list = json.load(f) files = get_files(path_to_new_images_dir) if ims_list is None: raise ValueError(f"Could not find the list in {path_to_json}") new_ims_list = [None] * len(ims_list) for i, im_dict in enumerate(ims_list): new_ims_list[i] = {} for task, path in im_dict.items(): new_ims_list[i][task] = path for i, im_dict in enumerate(ims_list): for task, path in im_dict.items(): file_name = os.path.splitext(path)[0] # removes extension file_name = file_name.rsplit("/", 1)[-1] # only the file_name file_found = False for file_path in files: if file_name in file_path: file_found = True new_ims_list[i][new_task_name] = file_path break if file_found: break else: print("Error! File ", file_name, "not found in directory!") return with open(path_to_new_json, "w", encoding="utf-8") as f: json.dump(new_ims_list, f, ensure_ascii=False) def sum_dict(dict1: Union[dict, Dict], dict2: Union[Dict, dict]) -> Union[dict, Dict]: """Add dict2 into dict1""" for k, v in dict2.items(): if not isinstance(v, dict): dict1[k] += v else: sum_dict(dict1[k], dict2[k]) return dict1 def div_dict(dict1: Union[dict, Dict], div_by: float) -> dict: """Divide elements of dict1 by div_by""" for k, v in dict1.items(): if not isinstance(v, dict): dict1[k] /= div_by else: div_dict(dict1[k], div_by) return dict1 def comet_id_from_url(url: str) -> Optional[str]: """ Get comet exp id from its url: https://www.comet.ml/vict0rsch/climategan/2a1a4a96afe848218c58ac4e47c5375f -> 2a1a4a96afe848218c58ac4e47c5375f Args: url (str): comet exp url Returns: str: comet exp id """ try: ids = url.split("/") ids = [i for i in ids if i] return ids[-1] except Exception: return None @contextlib.contextmanager def temp_np_seed(seed: Optional[int]) -> None: """ Set temporary numpy seed: with temp_np_seed(123): np.random.permutation(3) Args: seed (int): temporary numpy seed """ state = np.random.get_state() np.random.seed(seed) try: yield finally: np.random.set_state(state) def get_display_indices(opts: Dict, domain: str, length: int) -> list: """ Compute the index of images to use for comet logging: if opts.comet.display_indices is an int, and domain is real: return range(int) if opts.comet.display_indices is an int, and domain is sim: return permutation(length)[:int] if opts.comet.display_indices is a list: return list otherwise return [] Args: opts (addict.Dict): options domain (str): domain for those indices length (int): length of dataset for the permutation Returns: list(int): The indices to display """ if domain == "rf": dsize = max([opts.comet.display_size, opts.train.fid.get("n_images", 0)]) else: dsize = opts.comet.display_size if dsize > length: print( f"Warning: dataset is smaller ({length} images) " + f"than required display indices ({dsize})." + f" Selecting {length} images." ) display_indices = [] assert isinstance(dsize, (int, list)), "Unknown display size {}".format(dsize) if isinstance(dsize, int): assert dsize >= 0, "Display size cannot be < 0" with temp_np_seed(123): display_indices = list(np.random.permutation(length)[:dsize]) elif isinstance(dsize, list): display_indices = dsize if not display_indices: print("Warning: no display indices (utils.get_display_indices)") return display_indices def get_latest_path(path: Union[str, Path]) -> Path: """ Get the file/dir with largest increment i as `file (i).ext` Args: path (str or pathlib.Path): base pattern Returns: Path: path found """ p = Path(path).resolve() s = p.stem e = p.suffix files = list(p.parent.glob(f"{s}*(*){e}")) indices = list(p.parent.glob(f"{s}*(*){e}")) indices = list(map(lambda f: f.name, indices)) indices = list(map(lambda x: re.findall(r"\((.*?)\)", x)[-1], indices)) indices = list(map(int, indices)) if not indices: f = p else: f = files[np.argmax(indices)] return f def get_existing_jobID(output_path: Path) -> str: """ If the opts in output_path have a jobID, return it. Else, return None Args: output_path (pathlib.Path | str): where to look Returns: str | None: jobid """ op = Path(output_path) if not op.exists(): return opts_path = get_latest_path(op / "opts.yaml") if not opts_path.exists(): return with opts_path.open("r") as f: opts = yaml.safe_load(f) jobID = opts.get("jobID", None) return jobID def find_existing_training(opts: Dict) -> Optional[Path]: """ Looks in all directories like output_path.parent.glob(output_path.name*) and compares the logged slurm job id with the current opts.jobID If a match is found, the training should automatically continue in the matching output directory If no match is found, this is a new job and it should have a new output path Args: opts (Dict): trainer's options Returns: Optional[Path]: a path if a matchin jobID is found, None otherwise """ if opts.jobID is None: print("WARNING: current JOBID is None") return print("---------- Current job id:", opts.jobID) path = Path(opts.output_path).resolve() parent = path.parent name = path.name try: similar_dirs = [p.resolve() for p in parent.glob(f"{name}*") if p.is_dir()] for sd in similar_dirs: candidate_jobID = get_existing_jobID(sd) if candidate_jobID is not None and str(opts.jobID) == str(candidate_jobID): print(f"Found matching job id in {sd}\n") return sd print("Did not find a matching job id in \n {}\n".format(str(similar_dirs))) except Exception as e: print("ERROR: Could not resume (find_existing_training)", e) def pprint(*args: List[Any]): """ Prints *args within a box of "=" characters """ txt = " ".join(map(str, args)) col = "=====" space = " " head_size = 2 header = "\n".join(["=" * (len(txt) + 2 * (len(col) + len(space)))] * head_size) empty = "{}{}{}{}{}".format(col, space, " " * (len(txt)), space, col) print() print(header) print(empty) print("{}{}{}{}{}".format(col, space, txt, space, col)) print(empty) print(header) print() def get_existing_comet_id(path: str) -> Optional[str]: """ Returns the id of the existing comet experiment stored in path Args: path (str): Output pat where to look for the comet exp Returns: Optional[str]: comet exp's ID if any was found """ comet_previous_path = get_latest_path(Path(path) / "comet_url.txt") if comet_previous_path.exists(): with comet_previous_path.open("r") as f: url = f.read().strip() return comet_id_from_url(url) def get_latest_opts(path): """ get latest opts dumped in path if they look like *opts*.yaml and were increased as opts.yaml < opts (1).yaml < opts (2).yaml etc. Args: path (str or pathlib.Path): where to look for opts Raises: ValueError: If no match for *opts*.yaml is found Returns: addict.Dict: loaded opts """ path = Path(path) opts = get_latest_path(path / "opts.yaml") assert opts.exists() with opts.open("r") as f: opts = Dict(yaml.safe_load(f)) events_path = Path(__file__).parent.parent / "shared" / "trainer" / "events.yaml" if events_path.exists(): with events_path.open("r") as f: events_dict = yaml.safe_load(f) events_dict = Dict(events_dict) opts.events = events_dict return opts def text_to_array(text, width=640, height=40): """ Creates a numpy array of shape height x width x 3 with text written on it using PIL Args: text (str): text to write width (int, optional): Width of the resulting array. Defaults to 640. height (int, optional): Height of the resulting array. Defaults to 40. Returns: np.ndarray: Centered text """ from PIL import Image, ImageDraw, ImageFont img = Image.new("RGB", (width, height), (255, 255, 255)) try: font = ImageFont.truetype("UnBatang.ttf", 25) except OSError: font = ImageFont.load_default() d = ImageDraw.Draw(img) text_width, text_height = d.textsize(text) h = 40 // 2 - 3 * text_height // 2 w = width // 2 - text_width d.text((w, h), text, font=font, fill=(30, 30, 30)) return np.array(img) def all_texts_to_array(texts, width=640, height=40): """ Creates an array of texts, each of height and width specified by the args, concatenated along their width dimension Args: texts (list(str)): List of texts to concatenate width (int, optional): Individual text's width. Defaults to 640. height (int, optional): Individual text's height. Defaults to 40. Returns: list: len(texts) text arrays with dims height x width x 3 """ return [text_to_array(text, width, height) for text in texts] class Timer: def __init__(self, name="", store=None, precision=3, ignore=False, cuda=True): self.name = name self.store = store self.precision = precision self.ignore = ignore self.cuda = cuda if cuda: self._start_event = torch.cuda.Event(enable_timing=True) self._end_event = torch.cuda.Event(enable_timing=True) def format(self, n): return f"{n:.{self.precision}f}" def __enter__(self): """Start a new timer as a context manager""" if self.cuda: self._start_event.record() else: self._start_time = time.perf_counter() return self def __exit__(self, *exc_info): """Stop the context manager timer""" if self.ignore: return if self.cuda: self._end_event.record() torch.cuda.synchronize() new_time = self._start_event.elapsed_time(self._end_event) / 1000 else: t = time.perf_counter() new_time = t - self._start_time if self.store is not None: assert isinstance(self.store, list) self.store.append(new_time) if self.name: print(f"[{self.name}] Elapsed time: {self.format(new_time)}") def get_loader_output_shape_from_opts(opts): transforms = opts.data.transforms t = None for t in transforms[::-1]: if t.name == "resize": break assert t is not None if isinstance(t.new_size, Dict): return { task: ( t.new_size.get(task, t.new_size.default), t.new_size.get(task, t.new_size.default), ) for task in opts.tasks + ["x"] } assert isinstance(t.new_size, int) new_size = (t.new_size, t.new_size) return {task: new_size for task in opts.tasks + ["x"]} def find_target_size(opts, task): target_size = None if isinstance(opts.data.transforms[-1].new_size, int): target_size = opts.data.transforms[-1].new_size else: if task in opts.data.transforms[-1].new_size: target_size = opts.data.transforms[-1].new_size[task] else: assert "default" in opts.data.transforms[-1].new_size target_size = opts.data.transforms[-1].new_size["default"] return target_size def to_128(im, w_target=-1): h, w = im.shape[:2] aspect_ratio = h / w if w_target < 0: w_target = w nw = int(w_target / 128) * 128 nh = int(nw * aspect_ratio / 128) * 128 return nh, nw def is_image_file(filename): """Check that a file's name points to a known image format""" if isinstance(filename, Path): return filename.suffix in IMG_EXTENSIONS return Path(filename).suffix in IMG_EXTENSIONS def find_images(path, recursive=False): """ Get a list of all images contained in a directory: - path.glob("*") if not recursive - path.glob("**/*") if recursive """ p = Path(path) assert p.exists() assert p.is_dir() pattern = "*" if recursive: pattern += "*/*" return [i for i in p.glob(pattern) if i.is_file() and is_image_file(i)] def cols(): try: col = os.get_terminal_size().columns except Exception: col = 50 return col def upload_images_to_exp( path, exp=None, project_name="climategan-eval", sleep=-1, verbose=0 ): ims = find_images(path) end = None c = cols() if verbose == 1: end = "\r" if verbose > 1: end = "\n" if exp is None: exp = Experiment(project_name=project_name) for im in ims: exp.log_image(str(im)) if verbose > 0: if verbose == 1: print(" " * (c - 1), end="\r", flush=True) print(str(im), end=end, flush=True) if sleep > 0: time.sleep(sleep) return exp