# based on https://huggingface.co/spaces/NimaBoscarino/climategan/blob/main/app.py # noqa: E501 # thank you @NimaBoscarino import os import gradio as gr import googlemaps from skimage import io from urllib import parse import numpy as np from climategan_wrapper import ClimateGAN def predict(cg: ClimateGAN, api_key): def _predict(*args): image = place = painter = None if len(args) == 2: image = args[0] painter = args[1] else: assert len(args) == 3, "Unknown number of inputs {}".format(len(args)) image, place, painter = args if api_key and place: geocode_result = gmaps.geocode(place) address = geocode_result[0]["formatted_address"] static_map_url = f"https://maps.googleapis.com/maps/api/streetview?size=640x640&location={parse.quote(address)}&source=outdoor&key={api_key}" img_np = io.imread(static_map_url) else: img_np = image output_dict = cg.infer_single(img_np, painter) input_image = output_dict["input"] masked_input = output_dict["masked_input"] wildfire = output_dict["wildfire"] smog = output_dict["smog"] climategan_flood = output_dict.get( "climategan_flood", np.ones(input_image.shape) * 255, ) stable_flood = output_dict.get( "stable_flood", np.ones(input_image.shape) * 255, ) stable_copy_flood = output_dict.get( "stable_copy_flood", np.ones(input_image.shape) * 255, ) concat = output_dict.get( "concat", np.ones(input_image.shape) * 255, ) return ( input_image, masked_input, climategan_flood, stable_flood, stable_copy_flood, concat, wildfire, smog, ) return _predict if __name__ == "__main__": api_key = os.environ.get("GMAPS_API_KEY") gmaps = None if api_key is not None: gmaps = googlemaps.Client(key=api_key) cg = ClimateGAN( model_path="config/model/masker", dev_mode=os.environ.get("CG_DEV_MODE", "false").lower() == "true", ) cg._setup_stable_diffusion() with gr.Blocks() as blocks: with gr.Row(): with gr.Column(): gr.Markdown("# ClimateGAN: Visualize Climate Change") gr.HTML( 'Climate change does not impact everyone equally. This Space shows the effects of the climate emergency, "one address at a time". Visit the original experience at ThisClimateDoesNotExist.com.
Enter an address or place name, and ClimateGAN will generate images showing how the location could be impacted by flooding, wildfires, or smog.' # noqa: E501 ) with gr.Column(): gr.HTML( "

This project is an unofficial clone of ThisClimateDoesNotExist | ClimateGAN GitHub Repo

" # noqa: E501 ) with gr.Row(): gr.Markdown("## Inputs") with gr.Row(): with gr.Column(): inputs = [gr.inputs.Image(label="Input Image")] with gr.Column(): if api_key: inputs += [gr.inputs.Textbox(label="Address or place name")] inputs += [ gr.inputs.Dropdown( choices=[ "ClimateGAN Painter", "Stable Diffusion Painter", "Both", ], label="Choose Flood Painter", default="Both", ) ] btn = gr.Button("See for yourself!", label="Run") with gr.Row(): gr.Markdown("## Outputs") with gr.Row(): outputs = [] outputs.append( gr.outputs.Image(type="numpy", label="Original image"), ) outputs.append( gr.outputs.Image(type="numpy", label="Masked input image"), ) with gr.Row(): outputs.append( gr.outputs.Image(type="numpy", label="ClimateGAN-Flooded image"), ) outputs.append( gr.outputs.Image(type="numpy", label="Stable Diffusion-Flooded image"), ) outputs.append( gr.outputs.Image( type="numpy", label="Stable Diffusion-Flooded image (restricted to masked area)", ) ), with gr.Row(): outputs.append( gr.outputs.Image(type="numpy", label="Comparison of previous images"), ) with gr.Row(): outputs.append( gr.outputs.Image(type="numpy", label="Wildfire"), ) outputs.append( gr.outputs.Image(type="numpy", label="Smog"), ) btn.click(predict(cg, api_key), inputs=inputs, outputs=outputs) blocks.launch()