import torch.nn as nn from climategan.blocks import ResBlocks affine_par = True class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None): super(Bottleneck, self).__init__() # change self.conv1 = nn.Conv2d( inplanes, planes, kernel_size=1, stride=stride, bias=False ) self.bn1 = nn.BatchNorm2d(planes, affine=affine_par) for i in self.bn1.parameters(): i.requires_grad = False padding = dilation # change self.conv2 = nn.Conv2d( planes, planes, kernel_size=3, stride=1, padding=padding, bias=False, dilation=dilation, ) self.bn2 = nn.BatchNorm2d(planes, affine=affine_par) for i in self.bn2.parameters(): i.requires_grad = False self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4, affine=affine_par) for i in self.bn3.parameters(): i.requires_grad = False self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNetMulti(nn.Module): def __init__( self, layers, n_res=4, res_norm="instance", activ="lrelu", pad_type="reflect", ): self.inplanes = 64 block = Bottleneck super(ResNetMulti, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64, affine=affine_par) for i in self.bn1.parameters(): i.requires_grad = False self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d( kernel_size=3, stride=2, padding=0, ceil_mode=True ) # changed padding from 1 to 0 self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4) for m in self.modules(): if isinstance(m, nn.Conv2d): m.weight.data.normal_(0, 0.01) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() self.layer_res = ResBlocks( n_res, 2048, norm=res_norm, activation=activ, pad_type=pad_type ) def _make_layer(self, block, planes, blocks, stride=1, dilation=1): downsample = None if ( stride != 1 or self.inplanes != planes * block.expansion or dilation == 2 or dilation == 4 ): downsample = nn.Sequential( nn.Conv2d( self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False, ), nn.BatchNorm2d(planes * block.expansion, affine=affine_par), ) for i in downsample._modules["1"].parameters(): i.requires_grad = False layers = [] layers.append( block( self.inplanes, planes, stride, dilation=dilation, downsample=downsample ) ) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, dilation=dilation)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.layer_res(x) return x