File size: 5,392 Bytes
965bd28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import numpy as np
import cv2
import onnx
from onnx import numpy_helper

from insightface import model_zoo
from insightface.utils import face_align
from .base_swapper import BaseSwapper

from dofaker.utils import download_file, get_model_url


class InSwapper(BaseSwapper):

    def __init__(self, name='inswapper', root='weights/models'):
        _, model_file = download_file(get_model_url(name),
                                      save_dir=root,
                                      overwrite=False)
        providers = model_zoo.model_zoo.get_default_providers()
        self.session = model_zoo.model_zoo.PickableInferenceSession(
            model_file, providers=providers)

        model = onnx.load(model_file)
        graph = model.graph
        self.emap = numpy_helper.to_array(graph.initializer[-1])
        self.input_mean = 0.0
        self.input_std = 255.0

        inputs = self.session.get_inputs()
        self.input_names = []
        for inp in inputs:
            self.input_names.append(inp.name)
        outputs = self.session.get_outputs()
        output_names = []
        for out in outputs:
            output_names.append(out.name)
        self.output_names = output_names
        assert len(
            self.output_names
        ) == 1, "The output number of inswapper model should be 1, but got {}, please check your model.".format(
            len(self.output_names))
        output_shape = outputs[0].shape
        input_cfg = inputs[0]
        input_shape = input_cfg.shape
        self.input_shape = input_shape
        print('inswapper-shape:', self.input_shape)
        self.input_size = tuple(input_shape[2:4][::-1])

    def forward(self, img, latent):
        img = (img - self.input_mean) / self.input_std
        pred = self.session.run(self.output_names, {
            self.input_names[0]: img,
            self.input_names[1]: latent
        })[0]
        return pred

    def get(self, img, target_face, source_face, paste_back=True):
        aimg, M = face_align.norm_crop2(img, target_face.kps,
                                        self.input_size[0])
        blob = cv2.dnn.blobFromImage(
            aimg,
            1.0 / self.input_std,
            self.input_size,
            (self.input_mean, self.input_mean, self.input_mean),
            swapRB=True)
        latent = source_face.normed_embedding.reshape((1, -1))
        latent = np.dot(latent, self.emap)
        latent /= np.linalg.norm(latent)
        pred = self.session.run(self.output_names, {
            self.input_names[0]: blob,
            self.input_names[1]: latent
        })[0]
        img_fake = pred.transpose((0, 2, 3, 1))[0]
        bgr_fake = np.clip(255 * img_fake, 0, 255).astype(np.uint8)[:, :, ::-1]
        if not paste_back:
            return bgr_fake, M
        else:
            target_img = img
            fake_diff = bgr_fake.astype(np.float32) - aimg.astype(np.float32)
            fake_diff = np.abs(fake_diff).mean(axis=2)
            fake_diff[:2, :] = 0
            fake_diff[-2:, :] = 0
            fake_diff[:, :2] = 0
            fake_diff[:, -2:] = 0
            IM = cv2.invertAffineTransform(M)
            img_white = np.full((aimg.shape[0], aimg.shape[1]),
                                255,
                                dtype=np.float32)
            bgr_fake = cv2.warpAffine(
                bgr_fake,
                IM, (target_img.shape[1], target_img.shape[0]),
                borderValue=0.0)
            img_white = cv2.warpAffine(
                img_white,
                IM, (target_img.shape[1], target_img.shape[0]),
                borderValue=0.0)
            fake_diff = cv2.warpAffine(
                fake_diff,
                IM, (target_img.shape[1], target_img.shape[0]),
                borderValue=0.0)
            img_white[img_white > 20] = 255
            fthresh = 10
            fake_diff[fake_diff < fthresh] = 0
            fake_diff[fake_diff >= fthresh] = 255
            img_mask = img_white
            mask_h_inds, mask_w_inds = np.where(img_mask == 255)
            mask_h = np.max(mask_h_inds) - np.min(mask_h_inds)
            mask_w = np.max(mask_w_inds) - np.min(mask_w_inds)
            mask_size = int(np.sqrt(mask_h * mask_w))
            k = max(mask_size // 10, 10)
            #k = max(mask_size//20, 6)
            #k = 6
            kernel = np.ones((k, k), np.uint8)
            img_mask = cv2.erode(img_mask, kernel, iterations=1)
            kernel = np.ones((2, 2), np.uint8)
            fake_diff = cv2.dilate(fake_diff, kernel, iterations=1)
            k = max(mask_size // 20, 5)
            #k = 3
            #k = 3
            kernel_size = (k, k)
            blur_size = tuple(2 * i + 1 for i in kernel_size)
            img_mask = cv2.GaussianBlur(img_mask, blur_size, 0)
            k = 5
            kernel_size = (k, k)
            blur_size = tuple(2 * i + 1 for i in kernel_size)
            fake_diff = cv2.GaussianBlur(fake_diff, blur_size, 0)
            img_mask /= 255
            fake_diff /= 255
            #img_mask = fake_diff
            img_mask = np.reshape(img_mask,
                                  [img_mask.shape[0], img_mask.shape[1], 1])
            fake_merged = img_mask * bgr_fake + (
                1 - img_mask) * target_img.astype(np.float32)
            fake_merged = fake_merged.astype(np.uint8)
            return fake_merged