Spaces:
Running
Running
import numpy as np | |
import cv2 | |
from insightface import model_zoo | |
from dofaker.utils import download_file, get_model_url | |
class BSRGAN: | |
def __init__(self, name='bsrgan', root='weights/models', scale=1) -> None: | |
_, model_file = download_file(get_model_url(name), | |
save_dir=root, | |
overwrite=False) | |
self.scale = scale | |
providers = model_zoo.model_zoo.get_default_providers() | |
self.session = model_zoo.model_zoo.PickableInferenceSession( | |
model_file, providers=providers) | |
self.input_mean = 0.0 | |
self.input_std = 255.0 | |
inputs = self.session.get_inputs() | |
self.input_names = [] | |
for inp in inputs: | |
self.input_names.append(inp.name) | |
outputs = self.session.get_outputs() | |
output_names = [] | |
for out in outputs: | |
output_names.append(out.name) | |
self.output_names = output_names | |
assert len( | |
self.output_names | |
) == 1, "The output number of BSRGAN model should be 1, but got {}, please check your model.".format( | |
len(self.output_names)) | |
output_shape = outputs[0].shape | |
input_cfg = inputs[0] | |
input_shape = input_cfg.shape | |
self.input_shape = input_shape | |
print('image super resolution shape:', self.input_shape) | |
def forward(self, image, image_format='bgr'): | |
if isinstance(image, str): | |
image = cv2.imread(image, 1) | |
image_format = 'bgr' | |
elif isinstance(image, np.ndarray): | |
if image_format == 'bgr': | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
elif image_format == 'rgb': | |
pass | |
else: | |
raise UserWarning( | |
"BSRGAN not support image format {}".format(image_format)) | |
else: | |
raise UserWarning( | |
"BSRGAN input must be str or np.ndarray, but got {}.".format( | |
type(image))) | |
img = (image - self.input_mean) / self.input_std | |
pred = self.session.run(self.output_names, | |
{self.input_names[0]: img})[0] | |
return pred | |
def get(self, img, image_format='bgr'): | |
if image_format.lower() == 'bgr': | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) | |
elif image_format.lower() == 'rgb': | |
pass | |
else: | |
raise UserWarning( | |
"gfpgan not support image format {}".format(image_format)) | |
h, w, c = img.shape | |
blob = cv2.dnn.blobFromImage( | |
img, | |
1.0 / self.input_std, (w, h), | |
(self.input_mean, self.input_mean, self.input_mean), | |
swapRB=False) | |
pred = self.session.run(self.output_names, | |
{self.input_names[0]: blob})[0] | |
image_aug = pred.transpose((0, 2, 3, 1))[0] | |
rgb_aug = np.clip(self.input_std * image_aug + self.input_mean, 0, | |
255).astype(np.uint8) | |
rgb_aug = cv2.resize(rgb_aug, | |
(int(w * self.scale), int(h * self.scale))) | |
bgr_aug = rgb_aug[:, :, ::-1] | |
return bgr_aug | |