victorisgeek commited on
Commit
3133f25
·
verified ·
1 Parent(s): af3e4dd

Upload 2 files

Browse files
super_resolution/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ from .bsrgan import BSRGAN
super_resolution/bsrgan.py ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ import cv2
4
+
5
+ from insightface import model_zoo
6
+ from dofaker.utils import download_file, get_model_url
7
+
8
+
9
+ class BSRGAN:
10
+
11
+ def __init__(self, name='bsrgan', root='weights/models', scale=1) -> None:
12
+ _, model_file = download_file(get_model_url(name),
13
+ save_dir=root,
14
+ overwrite=False)
15
+ self.scale = scale
16
+ providers = model_zoo.model_zoo.get_default_providers()
17
+ self.session = model_zoo.model_zoo.PickableInferenceSession(
18
+ model_file, providers=providers)
19
+
20
+ self.input_mean = 0.0
21
+ self.input_std = 255.0
22
+ inputs = self.session.get_inputs()
23
+ self.input_names = []
24
+ for inp in inputs:
25
+ self.input_names.append(inp.name)
26
+ outputs = self.session.get_outputs()
27
+ output_names = []
28
+ for out in outputs:
29
+ output_names.append(out.name)
30
+ self.output_names = output_names
31
+ assert len(
32
+ self.output_names
33
+ ) == 1, "The output number of BSRGAN model should be 1, but got {}, please check your model.".format(
34
+ len(self.output_names))
35
+ output_shape = outputs[0].shape
36
+ input_cfg = inputs[0]
37
+ input_shape = input_cfg.shape
38
+ self.input_shape = input_shape
39
+ print('image super resolution shape:', self.input_shape)
40
+
41
+ def forward(self, image, image_format='bgr'):
42
+ if isinstance(image, str):
43
+ image = cv2.imread(image, 1)
44
+ image_format = 'bgr'
45
+ elif isinstance(image, np.ndarray):
46
+ if image_format == 'bgr':
47
+ image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
48
+ elif image_format == 'rgb':
49
+ pass
50
+ else:
51
+ raise UserWarning(
52
+ "BSRGAN not support image format {}".format(image_format))
53
+ else:
54
+ raise UserWarning(
55
+ "BSRGAN input must be str or np.ndarray, but got {}.".format(
56
+ type(image)))
57
+ img = (image - self.input_mean) / self.input_std
58
+ pred = self.session.run(self.output_names,
59
+ {self.input_names[0]: img})[0]
60
+ return pred
61
+
62
+ def get(self, img, image_format='bgr'):
63
+ if image_format.lower() == 'bgr':
64
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
65
+ elif image_format.lower() == 'rgb':
66
+ pass
67
+ else:
68
+ raise UserWarning(
69
+ "gfpgan not support image format {}".format(image_format))
70
+ h, w, c = img.shape
71
+ blob = cv2.dnn.blobFromImage(
72
+ img,
73
+ 1.0 / self.input_std, (w, h),
74
+ (self.input_mean, self.input_mean, self.input_mean),
75
+ swapRB=False)
76
+ pred = self.session.run(self.output_names,
77
+ {self.input_names[0]: blob})[0]
78
+ image_aug = pred.transpose((0, 2, 3, 1))[0]
79
+ rgb_aug = np.clip(self.input_std * image_aug + self.input_mean, 0,
80
+ 255).astype(np.uint8)
81
+ rgb_aug = cv2.resize(rgb_aug,
82
+ (int(w * self.scale), int(h * self.scale)))
83
+ bgr_aug = rgb_aug[:, :, ::-1]
84
+ return bgr_aug