victorisgeek commited on
Commit
590c25b
1 Parent(s): cf563f2

Upload 4 files

Browse files
dofaker/pose/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ from .pose_estimator import PoseEstimator
2
+ from .pose_transfer import PoseTransfer
dofaker/pose/pose_estimator.py ADDED
@@ -0,0 +1,280 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ import cv2
4
+ from scipy.ndimage.filters import gaussian_filter
5
+
6
+ from .pose_utils import _get_keypoints, _pad_image
7
+ from insightface import model_zoo
8
+ from dofaker.utils import download_file, get_model_url
9
+
10
+
11
+ class PoseEstimator:
12
+
13
+ def __init__(self, name='openpose_body', root='weights/models'):
14
+ _, model_file = download_file(get_model_url(name),
15
+ save_dir=root,
16
+ overwrite=False)
17
+ providers = model_zoo.model_zoo.get_default_providers()
18
+ self.session = model_zoo.model_zoo.PickableInferenceSession(
19
+ model_file, providers=providers)
20
+
21
+ self.input_mean = 127.5
22
+ self.input_std = 255.0
23
+ inputs = self.session.get_inputs()
24
+ self.input_names = []
25
+ for inp in inputs:
26
+ self.input_names.append(inp.name)
27
+ outputs = self.session.get_outputs()
28
+ output_names = []
29
+ for out in outputs:
30
+ output_names.append(out.name)
31
+ self.output_names = output_names
32
+ assert len(
33
+ self.output_names
34
+ ) == 2, "The output number of PoseEstimator model should be 2, but got {}, please check your model.".format(
35
+ len(self.output_names))
36
+ output_shape = outputs[0].shape
37
+ input_cfg = inputs[0]
38
+ input_shape = input_cfg.shape
39
+ self.input_shape = input_shape
40
+ print('pose estimator shape:', self.input_shape)
41
+
42
+ def forward(self, image, image_format='rgb'):
43
+ if isinstance(image, str):
44
+ image = cv2.imread(image, 1)
45
+ image_format = 'bgr'
46
+ elif isinstance(image, np.ndarray):
47
+ if image_format == 'bgr':
48
+ pass
49
+ elif image_format == 'rgb':
50
+ image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
51
+ image_format = 'bgr'
52
+ else:
53
+ raise UserWarning(
54
+ "PoseEstimator not support image format {}".format(
55
+ image_format))
56
+ else:
57
+ raise UserWarning(
58
+ "PoseEstimator input must be str or np.ndarray, but got {}.".
59
+ format(type(image)))
60
+
61
+ scales = [0.5]
62
+ stride = 8
63
+ bboxsize = 368
64
+ padvalue = 128
65
+ thresh_1 = 0.1
66
+ thresh_2 = 0.05
67
+
68
+ multipliers = [scale * bboxsize / image.shape[0] for scale in scales]
69
+ heatmap_avg = np.zeros((image.shape[0], image.shape[1], 19))
70
+ paf_avg = np.zeros((image.shape[0], image.shape[1], 38))
71
+
72
+ for scale in multipliers:
73
+ image_scaled = cv2.resize(image, (0, 0),
74
+ fx=scale,
75
+ fy=scale,
76
+ interpolation=cv2.INTER_CUBIC)
77
+ image_padded, pads = _pad_image(image_scaled, stride, padvalue)
78
+
79
+ image_tensor = np.expand_dims(np.transpose(image_padded, (2, 0, 1)),
80
+ 0)
81
+ blob = (np.float32(image_tensor) - self.input_mean) / self.input_std
82
+
83
+ pred = self.session.run(self.output_names,
84
+ {self.input_names[0]: blob})
85
+ Mconv7_stage6_L1, Mconv7_stage6_L2 = pred[0], pred[1]
86
+
87
+ heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0))
88
+ heatmap = cv2.resize(heatmap, (0, 0),
89
+ fx=stride,
90
+ fy=stride,
91
+ interpolation=cv2.INTER_CUBIC)
92
+ heatmap = heatmap[:image_padded.shape[0] -
93
+ pads[3], :image_padded.shape[1] - pads[2], :]
94
+ heatmap = cv2.resize(heatmap, (image.shape[1], image.shape[0]),
95
+ interpolation=cv2.INTER_CUBIC)
96
+
97
+ paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0))
98
+ paf = cv2.resize(paf, (0, 0),
99
+ fx=stride,
100
+ fy=stride,
101
+ interpolation=cv2.INTER_CUBIC)
102
+ paf = paf[:image_padded.shape[0] - pads[3], :image_padded.shape[1] -
103
+ pads[2], :]
104
+ paf = cv2.resize(paf, (image.shape[1], image.shape[0]),
105
+ interpolation=cv2.INTER_CUBIC)
106
+
107
+ heatmap_avg += (heatmap / len(multipliers))
108
+ paf_avg += (paf / len(multipliers))
109
+
110
+ all_peaks = []
111
+ num_peaks = 0
112
+
113
+ for part in range(18):
114
+ map_orig = heatmap_avg[:, :, part]
115
+ map_filt = gaussian_filter(map_orig, sigma=3)
116
+
117
+ map_L = np.zeros_like(map_filt)
118
+ map_T = np.zeros_like(map_filt)
119
+ map_R = np.zeros_like(map_filt)
120
+ map_B = np.zeros_like(map_filt)
121
+ map_L[1:, :] = map_filt[:-1, :]
122
+ map_T[:, 1:] = map_filt[:, :-1]
123
+ map_R[:-1, :] = map_filt[1:, :]
124
+ map_B[:, :-1] = map_filt[:, 1:]
125
+
126
+ peaks_binary = np.logical_and.reduce(
127
+ (map_filt >= map_L, map_filt >= map_T, map_filt
128
+ >= map_R, map_filt >= map_B, map_filt > thresh_1))
129
+ peaks = list(
130
+ zip(np.nonzero(peaks_binary)[1],
131
+ np.nonzero(peaks_binary)[0]))
132
+ peaks_ids = range(num_peaks, num_peaks + len(peaks))
133
+ peaks_with_scores = [
134
+ peak + (map_orig[peak[1], peak[0]], ) for peak in peaks
135
+ ]
136
+ peaks_with_scores_and_ids = [peaks_with_scores[i] + (peaks_ids[i],) \
137
+ for i in range(len(peaks_ids))]
138
+ all_peaks.append(peaks_with_scores_and_ids)
139
+ num_peaks += len(peaks)
140
+
141
+ map_idx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44],
142
+ [19, 20], [21, 22], [23, 24], [25, 26], [27, 28], [29, 30],
143
+ [47, 48], [49, 50], [53, 54], [51, 52], [55, 56], [37, 38],
144
+ [45, 46]]
145
+ limbseq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9],
146
+ [9, 10], [10, 11], [2, 12], [12, 13], [13, 14], [2, 1],
147
+ [1, 15], [15, 17], [1, 16], [16, 18], [3, 17], [6, 18]]
148
+
149
+ all_connections = []
150
+ spl_k = []
151
+ mid_n = 10
152
+
153
+ for k in range(len(map_idx)):
154
+ score_mid = paf_avg[:, :, [x - 19 for x in map_idx[k]]]
155
+ candidate_A = all_peaks[limbseq[k][0] - 1]
156
+ candidate_B = all_peaks[limbseq[k][1] - 1]
157
+ n_A = len(candidate_A)
158
+ n_B = len(candidate_B)
159
+ index_A, index_B = limbseq[k]
160
+ if n_A != 0 and n_B != 0:
161
+ connection_candidates = []
162
+ for i in range(n_A):
163
+ for j in range(n_B):
164
+ v = np.subtract(candidate_B[j][:2], candidate_A[i][:2])
165
+ n = np.sqrt(v[0] * v[0] + v[1] * v[1])
166
+ v = np.divide(v, n)
167
+
168
+ ab = list(
169
+ zip(
170
+ np.linspace(candidate_A[i][0],
171
+ candidate_B[j][0],
172
+ num=mid_n),
173
+ np.linspace(candidate_A[i][1],
174
+ candidate_B[j][1],
175
+ num=mid_n)))
176
+ vx = np.array([
177
+ score_mid[int(round(ab[x][1])),
178
+ int(round(ab[x][0])), 0]
179
+ for x in range(len(ab))
180
+ ])
181
+ vy = np.array([
182
+ score_mid[int(round(ab[x][1])),
183
+ int(round(ab[x][0])), 1]
184
+ for x in range(len(ab))
185
+ ])
186
+ score_midpoints = np.multiply(vx, v[0]) + np.multiply(
187
+ vy, v[1])
188
+ score_with_dist_prior = sum(
189
+ score_midpoints) / len(score_midpoints) + min(
190
+ 0.5 * image.shape[0] / n - 1, 0)
191
+ criterion_1 = len(
192
+ np.nonzero(score_midpoints > thresh_2)
193
+ [0]) > 0.8 * len(score_midpoints)
194
+ criterion_2 = score_with_dist_prior > 0
195
+ if criterion_1 and criterion_2:
196
+ connection_candidate = [
197
+ i, j, score_with_dist_prior,
198
+ score_with_dist_prior + candidate_A[i][2] +
199
+ candidate_B[j][2]
200
+ ]
201
+ connection_candidates.append(connection_candidate)
202
+ connection_candidates = sorted(connection_candidates,
203
+ key=lambda x: x[2],
204
+ reverse=True)
205
+ connection = np.zeros((0, 5))
206
+ for candidate in connection_candidates:
207
+ i, j, s = candidate[0:3]
208
+ if i not in connection[:, 3] and j not in connection[:, 4]:
209
+ connection = np.vstack([
210
+ connection,
211
+ [candidate_A[i][3], candidate_B[j][3], s, i, j]
212
+ ])
213
+ if len(connection) >= min(n_A, n_B):
214
+ break
215
+ all_connections.append(connection)
216
+ else:
217
+ spl_k.append(k)
218
+ all_connections.append([])
219
+
220
+ candidate = np.array(
221
+ [item for sublist in all_peaks for item in sublist])
222
+ subset = np.ones((0, 20)) * -1
223
+
224
+ for k in range(len(map_idx)):
225
+ if k not in spl_k:
226
+ part_As = all_connections[k][:, 0]
227
+ part_Bs = all_connections[k][:, 1]
228
+ index_A, index_B = np.array(limbseq[k]) - 1
229
+ for i in range(len(all_connections[k])):
230
+ found = 0
231
+ subset_idx = [-1, -1]
232
+ for j in range(len(subset)):
233
+ if subset[j][index_A] == part_As[i] or subset[j][
234
+ index_B] == part_Bs[i]:
235
+ subset_idx[found] = j
236
+ found += 1
237
+ if found == 1:
238
+ j = subset_idx[0]
239
+ if subset[j][index_B] != part_Bs[i]:
240
+ subset[j][index_B] = part_Bs[i]
241
+ subset[j][-1] += 1
242
+ subset[j][-2] += candidate[
243
+ part_Bs[i].astype(int),
244
+ 2] + all_connections[k][i][2]
245
+ elif found == 2:
246
+ j1, j2 = subset_idx
247
+ membership = ((subset[j1] >= 0).astype(int) +
248
+ (subset[j2] >= 0).astype(int))[:-2]
249
+ if len(np.nonzero(membership == 2)[0]) == 0:
250
+ subset[j1][:-2] += (subset[j2][:-2] + 1)
251
+ subset[j1][-2:] += subset[j2][-2:]
252
+ subset[j1][-2] += all_connections[k][i][2]
253
+ subset = np.delete(subset, j2, 0)
254
+ else:
255
+ subset[j1][index_B] = part_Bs[i]
256
+ subset[j1][-1] += 1
257
+ subset[j1][-2] += candidate[
258
+ part_Bs[i].astype(int),
259
+ 2] + all_connections[k][i][2]
260
+ elif not found and k < 17:
261
+ row = np.ones(20) * -1
262
+ row[index_A] = part_As[i]
263
+ row[index_B] = part_Bs[i]
264
+ row[-1] = 2
265
+ row[-2] = sum(
266
+ candidate[all_connections[k][i, :2].astype(int),
267
+ 2]) + all_connections[k][i][2]
268
+ subset = np.vstack([subset, row])
269
+
270
+ del_idx = []
271
+
272
+ for i in range(len(subset)):
273
+ if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
274
+ del_idx.append(i)
275
+ subset = np.delete(subset, del_idx, axis=0)
276
+
277
+ return _get_keypoints(candidate, subset)
278
+
279
+ def get(self, image, image_format='rgb'):
280
+ return self.forward(image, image_format)
dofaker/pose/pose_transfer.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ from scipy.ndimage.filters import gaussian_filter
4
+
5
+ from .pose_utils import _get_keypoints, _pad_image
6
+ from insightface import model_zoo
7
+ from dofaker.utils import download_file, get_model_url
8
+ from dofaker.transforms import center_crop, pad
9
+
10
+
11
+ class PoseTransfer:
12
+
13
+ def __init__(self,
14
+ name='pose_transfer',
15
+ root='weights/models',
16
+ pose_estimator=None):
17
+ assert pose_estimator is not None, "The pose_estimator of PoseTransfer shouldn't be None"
18
+ self.pose_estimator = pose_estimator
19
+ _, model_file = download_file(get_model_url(name),
20
+ save_dir=root,
21
+ overwrite=False)
22
+ providers = model_zoo.model_zoo.get_default_providers()
23
+ self.session = model_zoo.model_zoo.PickableInferenceSession(
24
+ model_file, providers=providers)
25
+
26
+ self.input_mean = 127.5
27
+ self.input_std = 127.5
28
+ inputs = self.session.get_inputs()
29
+ self.input_names = []
30
+ for inp in inputs:
31
+ self.input_names.append(inp.name)
32
+ outputs = self.session.get_outputs()
33
+ output_names = []
34
+ for out in outputs:
35
+ output_names.append(out.name)
36
+ self.output_names = output_names
37
+ assert len(
38
+ self.output_names
39
+ ) == 1, "The output number of PoseTransfer model should be 1, but got {}, please check your model.".format(
40
+ len(self.output_names))
41
+ output_shape = outputs[0].shape
42
+ input_cfg = inputs[0]
43
+ input_shape = input_cfg.shape
44
+ self.input_shape = input_shape
45
+ print('pose transfer shape:', self.input_shape)
46
+
47
+ def forward(self, source_image, target_image, image_format='rgb'):
48
+ h, w, c = source_image.shape
49
+ if image_format == 'rgb':
50
+ pass
51
+ elif image_format == 'bgr':
52
+ source_image = cv2.cvtColor(source_image, cv2.COLOR_BGR2RGB)
53
+ target_image = cv2.cvtColor(target_image, cv2.COLOR_BGR2RGB)
54
+ image_format = 'rgb'
55
+ else:
56
+ raise UserWarning(
57
+ "PoseTransfer not support image format {}".format(image_format))
58
+ imgA = self._resize_and_pad_image(source_image)
59
+ kptA = self._estimate_keypoints(imgA, image_format=image_format)
60
+ mapA = self._keypoints2heatmaps(kptA)
61
+
62
+ imgB = self._resize_and_pad_image(target_image)
63
+ kptB = self._estimate_keypoints(imgB)
64
+ mapB = self._keypoints2heatmaps(kptB)
65
+
66
+ imgA_t = (imgA.astype('float32') - self.input_mean) / self.input_std
67
+ imgA_t = imgA_t.transpose([2, 0, 1])[None, ...]
68
+ mapA_t = mapA.transpose([2, 0, 1])[None, ...]
69
+ mapB_t = mapB.transpose([2, 0, 1])[None, ...]
70
+ mapAB_t = np.concatenate((mapA_t, mapB_t), axis=1)
71
+ pred = self.session.run(self.output_names, {
72
+ self.input_names[0]: imgA_t,
73
+ self.input_names[1]: mapAB_t
74
+ })[0]
75
+ target_image = pred.transpose((0, 2, 3, 1))[0]
76
+ bgr_target_image = np.clip(
77
+ self.input_std * target_image + self.input_mean, 0,
78
+ 255).astype(np.uint8)[:, :, ::-1]
79
+ crop_size = (256,
80
+ min((256 * target_image.shape[1] // target_image.shape[0]),
81
+ 176))
82
+ bgr_image = center_crop(bgr_target_image, crop_size)
83
+ bgr_image = cv2.resize(bgr_image, (w, h), interpolation=cv2.INTER_CUBIC)
84
+ return bgr_image
85
+
86
+ def get(self, source_image, target_image, image_format='rgb'):
87
+ return self.forward(source_image, target_image, image_format)
88
+
89
+ def _resize_and_pad_image(self, image: np.ndarray, size=256):
90
+ w = size * image.shape[1] // image.shape[0]
91
+ w_box = min(w, size * 11 // 16)
92
+ image = cv2.resize(image, (w, size), interpolation=cv2.INTER_CUBIC)
93
+ image = center_crop(image, (size, w_box))
94
+ image = pad(image,
95
+ size - w_box,
96
+ size - w_box,
97
+ size - w_box,
98
+ size - w_box,
99
+ fill=255)
100
+ image = center_crop(image, (size, size))
101
+ return image
102
+
103
+ def _estimate_keypoints(self, image: np.ndarray, image_format='rgb'):
104
+ keypoints = self.pose_estimator.get(image, image_format)
105
+ keypoints = keypoints[0] if len(keypoints) > 0 else np.zeros(
106
+ (18, 3), dtype=np.int32)
107
+ keypoints[np.where(keypoints[:, 2] == 0), :2] = -1
108
+ keypoints = keypoints[:, :2]
109
+ return keypoints
110
+
111
+ def _keypoints2heatmaps(self, keypoints, size=256):
112
+ heatmaps = np.zeros((size, size, keypoints.shape[0]), dtype=np.float32)
113
+ for k in range(keypoints.shape[0]):
114
+ x, y = keypoints[k]
115
+ if x == -1 or y == -1:
116
+ continue
117
+ heatmaps[y, x, k] = 1.0
118
+ return heatmaps
dofaker/pose/pose_utils.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+
4
+ def _pad_image(image, stride=1, padvalue=0):
5
+ assert len(image.shape) == 2 or len(image.shape) == 3
6
+ h, w = image.shape[:2]
7
+ pads = [None] * 4
8
+ pads[0] = 0 # left
9
+ pads[1] = 0 # top
10
+ pads[2] = 0 if (w % stride == 0) else stride - (w % stride) # right
11
+ pads[3] = 0 if (h % stride == 0) else stride - (h % stride) # bottom
12
+ num_channels = 1 if len(image.shape) == 2 else image.shape[2]
13
+ image_padded = np.ones(
14
+ (h + pads[3], w + pads[2], num_channels), dtype=np.uint8) * padvalue
15
+ image_padded = np.squeeze(image_padded)
16
+ image_padded[:h, :w] = image
17
+ return image_padded, pads
18
+
19
+
20
+ def _get_keypoints(candidates, subsets):
21
+ k = subsets.shape[0]
22
+ keypoints = np.zeros((k, 18, 3), dtype=np.int32)
23
+ for i in range(k):
24
+ for j in range(18):
25
+ index = np.int32(subsets[i][j])
26
+ if index != -1:
27
+ x, y = np.int32(candidates[index][:2])
28
+ keypoints[i][j] = (x, y, 1)
29
+ return keypoints