Spaces:
Running
Running
victorisgeek
commited on
Commit
•
590c25b
1
Parent(s):
cf563f2
Upload 4 files
Browse files- dofaker/pose/__init__.py +2 -0
- dofaker/pose/pose_estimator.py +280 -0
- dofaker/pose/pose_transfer.py +118 -0
- dofaker/pose/pose_utils.py +29 -0
dofaker/pose/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .pose_estimator import PoseEstimator
|
2 |
+
from .pose_transfer import PoseTransfer
|
dofaker/pose/pose_estimator.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
from scipy.ndimage.filters import gaussian_filter
|
5 |
+
|
6 |
+
from .pose_utils import _get_keypoints, _pad_image
|
7 |
+
from insightface import model_zoo
|
8 |
+
from dofaker.utils import download_file, get_model_url
|
9 |
+
|
10 |
+
|
11 |
+
class PoseEstimator:
|
12 |
+
|
13 |
+
def __init__(self, name='openpose_body', root='weights/models'):
|
14 |
+
_, model_file = download_file(get_model_url(name),
|
15 |
+
save_dir=root,
|
16 |
+
overwrite=False)
|
17 |
+
providers = model_zoo.model_zoo.get_default_providers()
|
18 |
+
self.session = model_zoo.model_zoo.PickableInferenceSession(
|
19 |
+
model_file, providers=providers)
|
20 |
+
|
21 |
+
self.input_mean = 127.5
|
22 |
+
self.input_std = 255.0
|
23 |
+
inputs = self.session.get_inputs()
|
24 |
+
self.input_names = []
|
25 |
+
for inp in inputs:
|
26 |
+
self.input_names.append(inp.name)
|
27 |
+
outputs = self.session.get_outputs()
|
28 |
+
output_names = []
|
29 |
+
for out in outputs:
|
30 |
+
output_names.append(out.name)
|
31 |
+
self.output_names = output_names
|
32 |
+
assert len(
|
33 |
+
self.output_names
|
34 |
+
) == 2, "The output number of PoseEstimator model should be 2, but got {}, please check your model.".format(
|
35 |
+
len(self.output_names))
|
36 |
+
output_shape = outputs[0].shape
|
37 |
+
input_cfg = inputs[0]
|
38 |
+
input_shape = input_cfg.shape
|
39 |
+
self.input_shape = input_shape
|
40 |
+
print('pose estimator shape:', self.input_shape)
|
41 |
+
|
42 |
+
def forward(self, image, image_format='rgb'):
|
43 |
+
if isinstance(image, str):
|
44 |
+
image = cv2.imread(image, 1)
|
45 |
+
image_format = 'bgr'
|
46 |
+
elif isinstance(image, np.ndarray):
|
47 |
+
if image_format == 'bgr':
|
48 |
+
pass
|
49 |
+
elif image_format == 'rgb':
|
50 |
+
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
|
51 |
+
image_format = 'bgr'
|
52 |
+
else:
|
53 |
+
raise UserWarning(
|
54 |
+
"PoseEstimator not support image format {}".format(
|
55 |
+
image_format))
|
56 |
+
else:
|
57 |
+
raise UserWarning(
|
58 |
+
"PoseEstimator input must be str or np.ndarray, but got {}.".
|
59 |
+
format(type(image)))
|
60 |
+
|
61 |
+
scales = [0.5]
|
62 |
+
stride = 8
|
63 |
+
bboxsize = 368
|
64 |
+
padvalue = 128
|
65 |
+
thresh_1 = 0.1
|
66 |
+
thresh_2 = 0.05
|
67 |
+
|
68 |
+
multipliers = [scale * bboxsize / image.shape[0] for scale in scales]
|
69 |
+
heatmap_avg = np.zeros((image.shape[0], image.shape[1], 19))
|
70 |
+
paf_avg = np.zeros((image.shape[0], image.shape[1], 38))
|
71 |
+
|
72 |
+
for scale in multipliers:
|
73 |
+
image_scaled = cv2.resize(image, (0, 0),
|
74 |
+
fx=scale,
|
75 |
+
fy=scale,
|
76 |
+
interpolation=cv2.INTER_CUBIC)
|
77 |
+
image_padded, pads = _pad_image(image_scaled, stride, padvalue)
|
78 |
+
|
79 |
+
image_tensor = np.expand_dims(np.transpose(image_padded, (2, 0, 1)),
|
80 |
+
0)
|
81 |
+
blob = (np.float32(image_tensor) - self.input_mean) / self.input_std
|
82 |
+
|
83 |
+
pred = self.session.run(self.output_names,
|
84 |
+
{self.input_names[0]: blob})
|
85 |
+
Mconv7_stage6_L1, Mconv7_stage6_L2 = pred[0], pred[1]
|
86 |
+
|
87 |
+
heatmap = np.transpose(np.squeeze(Mconv7_stage6_L2), (1, 2, 0))
|
88 |
+
heatmap = cv2.resize(heatmap, (0, 0),
|
89 |
+
fx=stride,
|
90 |
+
fy=stride,
|
91 |
+
interpolation=cv2.INTER_CUBIC)
|
92 |
+
heatmap = heatmap[:image_padded.shape[0] -
|
93 |
+
pads[3], :image_padded.shape[1] - pads[2], :]
|
94 |
+
heatmap = cv2.resize(heatmap, (image.shape[1], image.shape[0]),
|
95 |
+
interpolation=cv2.INTER_CUBIC)
|
96 |
+
|
97 |
+
paf = np.transpose(np.squeeze(Mconv7_stage6_L1), (1, 2, 0))
|
98 |
+
paf = cv2.resize(paf, (0, 0),
|
99 |
+
fx=stride,
|
100 |
+
fy=stride,
|
101 |
+
interpolation=cv2.INTER_CUBIC)
|
102 |
+
paf = paf[:image_padded.shape[0] - pads[3], :image_padded.shape[1] -
|
103 |
+
pads[2], :]
|
104 |
+
paf = cv2.resize(paf, (image.shape[1], image.shape[0]),
|
105 |
+
interpolation=cv2.INTER_CUBIC)
|
106 |
+
|
107 |
+
heatmap_avg += (heatmap / len(multipliers))
|
108 |
+
paf_avg += (paf / len(multipliers))
|
109 |
+
|
110 |
+
all_peaks = []
|
111 |
+
num_peaks = 0
|
112 |
+
|
113 |
+
for part in range(18):
|
114 |
+
map_orig = heatmap_avg[:, :, part]
|
115 |
+
map_filt = gaussian_filter(map_orig, sigma=3)
|
116 |
+
|
117 |
+
map_L = np.zeros_like(map_filt)
|
118 |
+
map_T = np.zeros_like(map_filt)
|
119 |
+
map_R = np.zeros_like(map_filt)
|
120 |
+
map_B = np.zeros_like(map_filt)
|
121 |
+
map_L[1:, :] = map_filt[:-1, :]
|
122 |
+
map_T[:, 1:] = map_filt[:, :-1]
|
123 |
+
map_R[:-1, :] = map_filt[1:, :]
|
124 |
+
map_B[:, :-1] = map_filt[:, 1:]
|
125 |
+
|
126 |
+
peaks_binary = np.logical_and.reduce(
|
127 |
+
(map_filt >= map_L, map_filt >= map_T, map_filt
|
128 |
+
>= map_R, map_filt >= map_B, map_filt > thresh_1))
|
129 |
+
peaks = list(
|
130 |
+
zip(np.nonzero(peaks_binary)[1],
|
131 |
+
np.nonzero(peaks_binary)[0]))
|
132 |
+
peaks_ids = range(num_peaks, num_peaks + len(peaks))
|
133 |
+
peaks_with_scores = [
|
134 |
+
peak + (map_orig[peak[1], peak[0]], ) for peak in peaks
|
135 |
+
]
|
136 |
+
peaks_with_scores_and_ids = [peaks_with_scores[i] + (peaks_ids[i],) \
|
137 |
+
for i in range(len(peaks_ids))]
|
138 |
+
all_peaks.append(peaks_with_scores_and_ids)
|
139 |
+
num_peaks += len(peaks)
|
140 |
+
|
141 |
+
map_idx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44],
|
142 |
+
[19, 20], [21, 22], [23, 24], [25, 26], [27, 28], [29, 30],
|
143 |
+
[47, 48], [49, 50], [53, 54], [51, 52], [55, 56], [37, 38],
|
144 |
+
[45, 46]]
|
145 |
+
limbseq = [[2, 3], [2, 6], [3, 4], [4, 5], [6, 7], [7, 8], [2, 9],
|
146 |
+
[9, 10], [10, 11], [2, 12], [12, 13], [13, 14], [2, 1],
|
147 |
+
[1, 15], [15, 17], [1, 16], [16, 18], [3, 17], [6, 18]]
|
148 |
+
|
149 |
+
all_connections = []
|
150 |
+
spl_k = []
|
151 |
+
mid_n = 10
|
152 |
+
|
153 |
+
for k in range(len(map_idx)):
|
154 |
+
score_mid = paf_avg[:, :, [x - 19 for x in map_idx[k]]]
|
155 |
+
candidate_A = all_peaks[limbseq[k][0] - 1]
|
156 |
+
candidate_B = all_peaks[limbseq[k][1] - 1]
|
157 |
+
n_A = len(candidate_A)
|
158 |
+
n_B = len(candidate_B)
|
159 |
+
index_A, index_B = limbseq[k]
|
160 |
+
if n_A != 0 and n_B != 0:
|
161 |
+
connection_candidates = []
|
162 |
+
for i in range(n_A):
|
163 |
+
for j in range(n_B):
|
164 |
+
v = np.subtract(candidate_B[j][:2], candidate_A[i][:2])
|
165 |
+
n = np.sqrt(v[0] * v[0] + v[1] * v[1])
|
166 |
+
v = np.divide(v, n)
|
167 |
+
|
168 |
+
ab = list(
|
169 |
+
zip(
|
170 |
+
np.linspace(candidate_A[i][0],
|
171 |
+
candidate_B[j][0],
|
172 |
+
num=mid_n),
|
173 |
+
np.linspace(candidate_A[i][1],
|
174 |
+
candidate_B[j][1],
|
175 |
+
num=mid_n)))
|
176 |
+
vx = np.array([
|
177 |
+
score_mid[int(round(ab[x][1])),
|
178 |
+
int(round(ab[x][0])), 0]
|
179 |
+
for x in range(len(ab))
|
180 |
+
])
|
181 |
+
vy = np.array([
|
182 |
+
score_mid[int(round(ab[x][1])),
|
183 |
+
int(round(ab[x][0])), 1]
|
184 |
+
for x in range(len(ab))
|
185 |
+
])
|
186 |
+
score_midpoints = np.multiply(vx, v[0]) + np.multiply(
|
187 |
+
vy, v[1])
|
188 |
+
score_with_dist_prior = sum(
|
189 |
+
score_midpoints) / len(score_midpoints) + min(
|
190 |
+
0.5 * image.shape[0] / n - 1, 0)
|
191 |
+
criterion_1 = len(
|
192 |
+
np.nonzero(score_midpoints > thresh_2)
|
193 |
+
[0]) > 0.8 * len(score_midpoints)
|
194 |
+
criterion_2 = score_with_dist_prior > 0
|
195 |
+
if criterion_1 and criterion_2:
|
196 |
+
connection_candidate = [
|
197 |
+
i, j, score_with_dist_prior,
|
198 |
+
score_with_dist_prior + candidate_A[i][2] +
|
199 |
+
candidate_B[j][2]
|
200 |
+
]
|
201 |
+
connection_candidates.append(connection_candidate)
|
202 |
+
connection_candidates = sorted(connection_candidates,
|
203 |
+
key=lambda x: x[2],
|
204 |
+
reverse=True)
|
205 |
+
connection = np.zeros((0, 5))
|
206 |
+
for candidate in connection_candidates:
|
207 |
+
i, j, s = candidate[0:3]
|
208 |
+
if i not in connection[:, 3] and j not in connection[:, 4]:
|
209 |
+
connection = np.vstack([
|
210 |
+
connection,
|
211 |
+
[candidate_A[i][3], candidate_B[j][3], s, i, j]
|
212 |
+
])
|
213 |
+
if len(connection) >= min(n_A, n_B):
|
214 |
+
break
|
215 |
+
all_connections.append(connection)
|
216 |
+
else:
|
217 |
+
spl_k.append(k)
|
218 |
+
all_connections.append([])
|
219 |
+
|
220 |
+
candidate = np.array(
|
221 |
+
[item for sublist in all_peaks for item in sublist])
|
222 |
+
subset = np.ones((0, 20)) * -1
|
223 |
+
|
224 |
+
for k in range(len(map_idx)):
|
225 |
+
if k not in spl_k:
|
226 |
+
part_As = all_connections[k][:, 0]
|
227 |
+
part_Bs = all_connections[k][:, 1]
|
228 |
+
index_A, index_B = np.array(limbseq[k]) - 1
|
229 |
+
for i in range(len(all_connections[k])):
|
230 |
+
found = 0
|
231 |
+
subset_idx = [-1, -1]
|
232 |
+
for j in range(len(subset)):
|
233 |
+
if subset[j][index_A] == part_As[i] or subset[j][
|
234 |
+
index_B] == part_Bs[i]:
|
235 |
+
subset_idx[found] = j
|
236 |
+
found += 1
|
237 |
+
if found == 1:
|
238 |
+
j = subset_idx[0]
|
239 |
+
if subset[j][index_B] != part_Bs[i]:
|
240 |
+
subset[j][index_B] = part_Bs[i]
|
241 |
+
subset[j][-1] += 1
|
242 |
+
subset[j][-2] += candidate[
|
243 |
+
part_Bs[i].astype(int),
|
244 |
+
2] + all_connections[k][i][2]
|
245 |
+
elif found == 2:
|
246 |
+
j1, j2 = subset_idx
|
247 |
+
membership = ((subset[j1] >= 0).astype(int) +
|
248 |
+
(subset[j2] >= 0).astype(int))[:-2]
|
249 |
+
if len(np.nonzero(membership == 2)[0]) == 0:
|
250 |
+
subset[j1][:-2] += (subset[j2][:-2] + 1)
|
251 |
+
subset[j1][-2:] += subset[j2][-2:]
|
252 |
+
subset[j1][-2] += all_connections[k][i][2]
|
253 |
+
subset = np.delete(subset, j2, 0)
|
254 |
+
else:
|
255 |
+
subset[j1][index_B] = part_Bs[i]
|
256 |
+
subset[j1][-1] += 1
|
257 |
+
subset[j1][-2] += candidate[
|
258 |
+
part_Bs[i].astype(int),
|
259 |
+
2] + all_connections[k][i][2]
|
260 |
+
elif not found and k < 17:
|
261 |
+
row = np.ones(20) * -1
|
262 |
+
row[index_A] = part_As[i]
|
263 |
+
row[index_B] = part_Bs[i]
|
264 |
+
row[-1] = 2
|
265 |
+
row[-2] = sum(
|
266 |
+
candidate[all_connections[k][i, :2].astype(int),
|
267 |
+
2]) + all_connections[k][i][2]
|
268 |
+
subset = np.vstack([subset, row])
|
269 |
+
|
270 |
+
del_idx = []
|
271 |
+
|
272 |
+
for i in range(len(subset)):
|
273 |
+
if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4:
|
274 |
+
del_idx.append(i)
|
275 |
+
subset = np.delete(subset, del_idx, axis=0)
|
276 |
+
|
277 |
+
return _get_keypoints(candidate, subset)
|
278 |
+
|
279 |
+
def get(self, image, image_format='rgb'):
|
280 |
+
return self.forward(image, image_format)
|
dofaker/pose/pose_transfer.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from scipy.ndimage.filters import gaussian_filter
|
4 |
+
|
5 |
+
from .pose_utils import _get_keypoints, _pad_image
|
6 |
+
from insightface import model_zoo
|
7 |
+
from dofaker.utils import download_file, get_model_url
|
8 |
+
from dofaker.transforms import center_crop, pad
|
9 |
+
|
10 |
+
|
11 |
+
class PoseTransfer:
|
12 |
+
|
13 |
+
def __init__(self,
|
14 |
+
name='pose_transfer',
|
15 |
+
root='weights/models',
|
16 |
+
pose_estimator=None):
|
17 |
+
assert pose_estimator is not None, "The pose_estimator of PoseTransfer shouldn't be None"
|
18 |
+
self.pose_estimator = pose_estimator
|
19 |
+
_, model_file = download_file(get_model_url(name),
|
20 |
+
save_dir=root,
|
21 |
+
overwrite=False)
|
22 |
+
providers = model_zoo.model_zoo.get_default_providers()
|
23 |
+
self.session = model_zoo.model_zoo.PickableInferenceSession(
|
24 |
+
model_file, providers=providers)
|
25 |
+
|
26 |
+
self.input_mean = 127.5
|
27 |
+
self.input_std = 127.5
|
28 |
+
inputs = self.session.get_inputs()
|
29 |
+
self.input_names = []
|
30 |
+
for inp in inputs:
|
31 |
+
self.input_names.append(inp.name)
|
32 |
+
outputs = self.session.get_outputs()
|
33 |
+
output_names = []
|
34 |
+
for out in outputs:
|
35 |
+
output_names.append(out.name)
|
36 |
+
self.output_names = output_names
|
37 |
+
assert len(
|
38 |
+
self.output_names
|
39 |
+
) == 1, "The output number of PoseTransfer model should be 1, but got {}, please check your model.".format(
|
40 |
+
len(self.output_names))
|
41 |
+
output_shape = outputs[0].shape
|
42 |
+
input_cfg = inputs[0]
|
43 |
+
input_shape = input_cfg.shape
|
44 |
+
self.input_shape = input_shape
|
45 |
+
print('pose transfer shape:', self.input_shape)
|
46 |
+
|
47 |
+
def forward(self, source_image, target_image, image_format='rgb'):
|
48 |
+
h, w, c = source_image.shape
|
49 |
+
if image_format == 'rgb':
|
50 |
+
pass
|
51 |
+
elif image_format == 'bgr':
|
52 |
+
source_image = cv2.cvtColor(source_image, cv2.COLOR_BGR2RGB)
|
53 |
+
target_image = cv2.cvtColor(target_image, cv2.COLOR_BGR2RGB)
|
54 |
+
image_format = 'rgb'
|
55 |
+
else:
|
56 |
+
raise UserWarning(
|
57 |
+
"PoseTransfer not support image format {}".format(image_format))
|
58 |
+
imgA = self._resize_and_pad_image(source_image)
|
59 |
+
kptA = self._estimate_keypoints(imgA, image_format=image_format)
|
60 |
+
mapA = self._keypoints2heatmaps(kptA)
|
61 |
+
|
62 |
+
imgB = self._resize_and_pad_image(target_image)
|
63 |
+
kptB = self._estimate_keypoints(imgB)
|
64 |
+
mapB = self._keypoints2heatmaps(kptB)
|
65 |
+
|
66 |
+
imgA_t = (imgA.astype('float32') - self.input_mean) / self.input_std
|
67 |
+
imgA_t = imgA_t.transpose([2, 0, 1])[None, ...]
|
68 |
+
mapA_t = mapA.transpose([2, 0, 1])[None, ...]
|
69 |
+
mapB_t = mapB.transpose([2, 0, 1])[None, ...]
|
70 |
+
mapAB_t = np.concatenate((mapA_t, mapB_t), axis=1)
|
71 |
+
pred = self.session.run(self.output_names, {
|
72 |
+
self.input_names[0]: imgA_t,
|
73 |
+
self.input_names[1]: mapAB_t
|
74 |
+
})[0]
|
75 |
+
target_image = pred.transpose((0, 2, 3, 1))[0]
|
76 |
+
bgr_target_image = np.clip(
|
77 |
+
self.input_std * target_image + self.input_mean, 0,
|
78 |
+
255).astype(np.uint8)[:, :, ::-1]
|
79 |
+
crop_size = (256,
|
80 |
+
min((256 * target_image.shape[1] // target_image.shape[0]),
|
81 |
+
176))
|
82 |
+
bgr_image = center_crop(bgr_target_image, crop_size)
|
83 |
+
bgr_image = cv2.resize(bgr_image, (w, h), interpolation=cv2.INTER_CUBIC)
|
84 |
+
return bgr_image
|
85 |
+
|
86 |
+
def get(self, source_image, target_image, image_format='rgb'):
|
87 |
+
return self.forward(source_image, target_image, image_format)
|
88 |
+
|
89 |
+
def _resize_and_pad_image(self, image: np.ndarray, size=256):
|
90 |
+
w = size * image.shape[1] // image.shape[0]
|
91 |
+
w_box = min(w, size * 11 // 16)
|
92 |
+
image = cv2.resize(image, (w, size), interpolation=cv2.INTER_CUBIC)
|
93 |
+
image = center_crop(image, (size, w_box))
|
94 |
+
image = pad(image,
|
95 |
+
size - w_box,
|
96 |
+
size - w_box,
|
97 |
+
size - w_box,
|
98 |
+
size - w_box,
|
99 |
+
fill=255)
|
100 |
+
image = center_crop(image, (size, size))
|
101 |
+
return image
|
102 |
+
|
103 |
+
def _estimate_keypoints(self, image: np.ndarray, image_format='rgb'):
|
104 |
+
keypoints = self.pose_estimator.get(image, image_format)
|
105 |
+
keypoints = keypoints[0] if len(keypoints) > 0 else np.zeros(
|
106 |
+
(18, 3), dtype=np.int32)
|
107 |
+
keypoints[np.where(keypoints[:, 2] == 0), :2] = -1
|
108 |
+
keypoints = keypoints[:, :2]
|
109 |
+
return keypoints
|
110 |
+
|
111 |
+
def _keypoints2heatmaps(self, keypoints, size=256):
|
112 |
+
heatmaps = np.zeros((size, size, keypoints.shape[0]), dtype=np.float32)
|
113 |
+
for k in range(keypoints.shape[0]):
|
114 |
+
x, y = keypoints[k]
|
115 |
+
if x == -1 or y == -1:
|
116 |
+
continue
|
117 |
+
heatmaps[y, x, k] = 1.0
|
118 |
+
return heatmaps
|
dofaker/pose/pose_utils.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
def _pad_image(image, stride=1, padvalue=0):
|
5 |
+
assert len(image.shape) == 2 or len(image.shape) == 3
|
6 |
+
h, w = image.shape[:2]
|
7 |
+
pads = [None] * 4
|
8 |
+
pads[0] = 0 # left
|
9 |
+
pads[1] = 0 # top
|
10 |
+
pads[2] = 0 if (w % stride == 0) else stride - (w % stride) # right
|
11 |
+
pads[3] = 0 if (h % stride == 0) else stride - (h % stride) # bottom
|
12 |
+
num_channels = 1 if len(image.shape) == 2 else image.shape[2]
|
13 |
+
image_padded = np.ones(
|
14 |
+
(h + pads[3], w + pads[2], num_channels), dtype=np.uint8) * padvalue
|
15 |
+
image_padded = np.squeeze(image_padded)
|
16 |
+
image_padded[:h, :w] = image
|
17 |
+
return image_padded, pads
|
18 |
+
|
19 |
+
|
20 |
+
def _get_keypoints(candidates, subsets):
|
21 |
+
k = subsets.shape[0]
|
22 |
+
keypoints = np.zeros((k, 18, 3), dtype=np.int32)
|
23 |
+
for i in range(k):
|
24 |
+
for j in range(18):
|
25 |
+
index = np.int32(subsets[i][j])
|
26 |
+
if index != -1:
|
27 |
+
x, y = np.int32(candidates[index][:2])
|
28 |
+
keypoints[i][j] = (x, y, 1)
|
29 |
+
return keypoints
|