import numpy as np import cv2 import onnx from onnx import numpy_helper from insightface import model_zoo from insightface.utils import face_align from .base_swapper import BaseSwapper from dofaker.utils import download_file, get_model_url class InSwapper(BaseSwapper): def __init__(self, name='inswapper', root='weights/models'): _, model_file = download_file(get_model_url(name), save_dir=root, overwrite=False) providers = model_zoo.model_zoo.get_default_providers() self.session = model_zoo.model_zoo.PickableInferenceSession( model_file, providers=providers) model = onnx.load(model_file) graph = model.graph self.emap = numpy_helper.to_array(graph.initializer[-1]) self.input_mean = 0.0 self.input_std = 255.0 inputs = self.session.get_inputs() self.input_names = [] for inp in inputs: self.input_names.append(inp.name) outputs = self.session.get_outputs() output_names = [] for out in outputs: output_names.append(out.name) self.output_names = output_names assert len( self.output_names ) == 1, "The output number of inswapper model should be 1, but got {}, please check your model.".format( len(self.output_names)) output_shape = outputs[0].shape input_cfg = inputs[0] input_shape = input_cfg.shape self.input_shape = input_shape print('inswapper-shape:', self.input_shape) self.input_size = tuple(input_shape[2:4][::-1]) def forward(self, img, latent): img = (img - self.input_mean) / self.input_std pred = self.session.run(self.output_names, { self.input_names[0]: img, self.input_names[1]: latent })[0] return pred def get(self, img, target_face, source_face, paste_back=True): aimg, M = face_align.norm_crop2(img, target_face.kps, self.input_size[0]) blob = cv2.dnn.blobFromImage( aimg, 1.0 / self.input_std, self.input_size, (self.input_mean, self.input_mean, self.input_mean), swapRB=True) latent = source_face.normed_embedding.reshape((1, -1)) latent = np.dot(latent, self.emap) latent /= np.linalg.norm(latent) pred = self.session.run(self.output_names, { self.input_names[0]: blob, self.input_names[1]: latent })[0] img_fake = pred.transpose((0, 2, 3, 1))[0] bgr_fake = np.clip(255 * img_fake, 0, 255).astype(np.uint8)[:, :, ::-1] if not paste_back: return bgr_fake, M else: target_img = img fake_diff = bgr_fake.astype(np.float32) - aimg.astype(np.float32) fake_diff = np.abs(fake_diff).mean(axis=2) fake_diff[:2, :] = 0 fake_diff[-2:, :] = 0 fake_diff[:, :2] = 0 fake_diff[:, -2:] = 0 IM = cv2.invertAffineTransform(M) img_white = np.full((aimg.shape[0], aimg.shape[1]), 255, dtype=np.float32) bgr_fake = cv2.warpAffine( bgr_fake, IM, (target_img.shape[1], target_img.shape[0]), borderValue=0.0) img_white = cv2.warpAffine( img_white, IM, (target_img.shape[1], target_img.shape[0]), borderValue=0.0) fake_diff = cv2.warpAffine( fake_diff, IM, (target_img.shape[1], target_img.shape[0]), borderValue=0.0) img_white[img_white > 20] = 255 fthresh = 10 fake_diff[fake_diff < fthresh] = 0 fake_diff[fake_diff >= fthresh] = 255 img_mask = img_white mask_h_inds, mask_w_inds = np.where(img_mask == 255) mask_h = np.max(mask_h_inds) - np.min(mask_h_inds) mask_w = np.max(mask_w_inds) - np.min(mask_w_inds) mask_size = int(np.sqrt(mask_h * mask_w)) k = max(mask_size // 10, 10) #k = max(mask_size//20, 6) #k = 6 kernel = np.ones((k, k), np.uint8) img_mask = cv2.erode(img_mask, kernel, iterations=1) kernel = np.ones((2, 2), np.uint8) fake_diff = cv2.dilate(fake_diff, kernel, iterations=1) k = max(mask_size // 20, 5) #k = 3 #k = 3 kernel_size = (k, k) blur_size = tuple(2 * i + 1 for i in kernel_size) img_mask = cv2.GaussianBlur(img_mask, blur_size, 0) k = 5 kernel_size = (k, k) blur_size = tuple(2 * i + 1 for i in kernel_size) fake_diff = cv2.GaussianBlur(fake_diff, blur_size, 0) img_mask /= 255 fake_diff /= 255 #img_mask = fake_diff img_mask = np.reshape(img_mask, [img_mask.shape[0], img_mask.shape[1], 1]) fake_merged = img_mask * bgr_fake + ( 1 - img_mask) * target_img.astype(np.float32) fake_merged = fake_merged.astype(np.uint8) return fake_merged