Spaces:
Running
Running
import numpy as np | |
import cv2 | |
import os | |
import insightface | |
from insightface.app import FaceAnalysis | |
from insightface.data import get_image as ins_get_image | |
import gradio as gr | |
theme = gr.themes.Default( | |
font=['Helvetica', 'ui-sans-serif', 'system-ui', 'sans-serif'], | |
font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'], | |
).set( | |
border_color_primary='#c5c5d2', | |
button_large_padding='6px 12px', | |
body_text_color_subdued='#484848', | |
background_fill_secondary='#eaeaea' | |
) | |
def add_bbox_padding(bbox, margin=5): | |
return [ | |
bbox[0] - margin, | |
bbox[1] - margin, | |
bbox[2] + margin, | |
bbox[3] + margin] | |
def select_handler(img, evt: gr.SelectData): | |
faces = app.get(img) | |
faces = sorted(faces, key = lambda x : x.bbox[0]) | |
cropped_image = [] | |
face_index = -1 | |
sel_face_index = 0 | |
print("Coords: ", evt.index[0],evt.index[1]) | |
for face in faces: | |
box = face.bbox.astype(np.int32) | |
face_index = face_index + 1 | |
if point_in_box((box[0], box[1]),(box[2],box[3]),(evt.index[0],evt.index[1])) == True: | |
# print("True ", face_index) | |
# print("Bbox org: ", box) | |
# Add ~25% margin to the box so the face is recognized correctly | |
margin = int((box[2]-box[0]) * 0.35) | |
box = add_bbox_padding(box,margin) | |
box = np.clip(box,0,None) | |
print("Bbox exp: ", box) | |
sel_face_index = face_index | |
cropped_image = img[box[1]:box[3],box[0]:box[2]] | |
return cropped_image, sel_face_index | |
def point_in_box(bl, tr, p) : | |
if (p[0] > bl[0] and p[0] < tr[0] and p[1] > bl[1] and p[1] < tr[1]) : | |
return True | |
else: | |
return False | |
def get_faces(img): | |
faces = app.get(img) | |
faces = sorted(faces, key = lambda x : x.bbox[0]) | |
#boxed_faces = app.draw_on(img, faces) | |
#for i in range(len(faces)): | |
# face = faces[i] | |
# box = face.bbox.astype(np.int32) | |
# cv2.putText(boxed_faces,'Face#:%d'%(i), (box[0]-1, box[3]+14),cv2.FONT_HERSHEY_COMPLEX,0.7,(0,0,255),2) | |
return img, len(faces) | |
def swap_face_fct(img_source,face_index,img_swap_face): | |
faces = app.get(img_source) | |
faces = sorted(faces, key = lambda x : x.bbox[0]) | |
src_face = app.get(img_swap_face) | |
src_face = sorted(src_face, key = lambda x : x.bbox[0]) | |
#print("index:",faces) | |
res = swapper.get(img_source, faces[face_index], src_face[0], paste_back=True) | |
return res | |
def swap_video_fct(video_path, output_path, source_face, destination_face, tolerance, preview=-1, progress=gr.Progress()): | |
# Get the Destination Face parameters (the face which should be swapped) | |
dest_face = app.get(destination_face) | |
dest_face = sorted(dest_face, key = lambda x : x.bbox[0]) | |
if(len(dest_face) == 0): | |
print("No dest face found") | |
return -1 | |
dest_face_feats = [] | |
dest_face_feats.append(dest_face[0].normed_embedding) | |
dest_face_feats = np.array(dest_face_feats, dtype=np.float32) | |
# Get the source face parameters (the face that replaces the original) | |
src_face = app.get(source_face) | |
src_face = sorted(src_face, key = lambda x : x.bbox[0]) | |
if(len(src_face) == 0): | |
print("No source face found") | |
return -1 | |
cap = cv2.VideoCapture(video_path) | |
ret, frame = cap.read() | |
fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
fourcc = cv2.VideoWriter_fourcc(*'avc1') | |
# Use the same tmp dir from gradio if no output path is set | |
if(len(output_path) > 0): | |
out_path = output_path | |
else: | |
out_path = os.path.dirname(video_path) + "/out.mp4" | |
if preview == -1: | |
for_range = range(frame_count) | |
video_out = cv2.VideoWriter(out_path,fourcc,fps,(width,height)) | |
else: | |
for_range = range(preview-1,preview) | |
for i in for_range: | |
progress(i/frame_count, desc="Processing") | |
cap.set(cv2.CAP_PROP_POS_FRAMES, i) | |
ret, frame = cap.read() | |
#frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
# Find all faces in the current frame | |
faces = app.get(frame) | |
faces = sorted(faces, key = lambda x : x.bbox[0]) | |
# No face in Scene => copy input frame | |
if(len(faces) > 0): | |
feats = [] | |
for face in faces: | |
feats.append(face.normed_embedding) | |
feats = np.array(feats, dtype=np.float32) | |
sims = np.dot(dest_face_feats, feats.T) | |
print(sims) | |
# find the index of the most similar face | |
max_index = np.argmax(sims) | |
print("Sim:", max_index) | |
if(sims[0][max_index]*100 >= (100-tolerance)): | |
frame = swapper.get(frame, faces[max_index], src_face[0], paste_back=True) | |
if preview == -1: | |
video_out.write(frame) | |
if preview == -1: | |
video_out.release() | |
return out_path | |
else: | |
return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
ins_get_image | |
def analyze_video(video_path): | |
cap = cv2.VideoCapture(video_path) | |
fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
length = frame_count/fps | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
return f"Resolution: {width}x{height}\nLength: {length}\nFps: {fps}\nFrames: {frame_count}" | |
def update_slider(video_path): | |
cap = cv2.VideoCapture(video_path) | |
fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
length = frame_count/fps | |
return gr.update(minimum=0,maximum=frame_count,value=frame_count/2) | |
def show_preview(video_path, frame_number): | |
cap = cv2.VideoCapture(video_path) | |
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number) | |
ret, frame = cap.read() | |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
return frame | |
def create_interface(): | |
title = 'Face Swap UI' | |
with gr.Blocks(analytics_enabled=False, title=title) as face_swap_ui: | |
with gr.Tab("Swap Face Image"): | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(label='Input Image (Click to select a face)').style(height=400) | |
with gr.Row(): | |
analyze_button = gr.Button("Analyze") | |
with gr.Row(): | |
with gr.Column(): | |
face_num = gr.Number(label='Recognized Faces') | |
face_index_num = gr.Number(label='Face Index', precision=0) | |
selected_face = gr.Image(label='Face to swap', interactive=False) | |
swap_face = gr.Image(label='Swap Face') | |
swap_button = gr.Button("Swap") | |
with gr.Column(): | |
image_output = gr.Image(label='Output Image',interactive=False) | |
#text_output = gr.Textbox(placeholder="What is your name?") | |
swap_button.click(fn=swap_face_fct, inputs=[image_input, face_index_num, swap_face], outputs=[image_output]) | |
image_input.select(select_handler, image_input, [selected_face, face_index_num]) | |
analyze_button.click(fn=get_faces, inputs=image_input, outputs=[image_input,face_num]) | |
with gr.Tab("Swap Face Video"): | |
with gr.Row(): | |
with gr.Column(): | |
source_video = gr.Video() | |
video_info = gr.Textbox(label="Video Information") | |
gr.Markdown("Select a frame for preview with the slider. Then select the face which should be swapped by clicking on it with the cursor") | |
video_position = gr.Slider(label="Frame preview",interactive=True) | |
frame_preview = gr.Image(label="Frame preview") | |
face_index = gr.Textbox(label="Face-Index",interactive=False) | |
with gr.Row(): | |
dest_face_vid = gr.Image(Label="Face tow swap",interactive=True) | |
source_face_vid = gr.Image(Label="New Face") | |
gr.Markdown("The higher the tolerance the more likely a wrong face will be swapped. 30-40 is a good starting point.") | |
face_tolerance = gr.Slider(label="Tolerance",value=40,interactive=True) | |
preview_video = gr.Button("Preview") | |
video_file_path = gr.Text(label="Output Video path incl. file.mp4 (when left empty it will be put in the gradio temp dir)") | |
process_video = gr.Button("Process") | |
with gr.Column(): | |
with gr.Column(scale=1): | |
image_output = gr.Image() | |
output_video = gr.Video(interactive=False) | |
with gr.Column(scale=1): | |
pass | |
# Component Events | |
source_video.upload(fn=analyze_video,inputs=source_video,outputs=video_info) | |
video_info.change(fn=update_slider,inputs=source_video,outputs=video_position) | |
#preview_button.click(fn=show_preview,inputs=[source_video, video_position],outputs=frame_preview) | |
frame_preview.select(select_handler, frame_preview, [dest_face_vid, face_index ]) | |
video_position.change(show_preview,inputs=[source_video, video_position],outputs=frame_preview) | |
process_video.click(fn=swap_video_fct,inputs=[source_video,video_file_path,source_face_vid,dest_face_vid, face_tolerance], outputs=output_video) | |
preview_video.click(fn=swap_video_fct,inputs=[source_video,video_file_path,source_face_vid,dest_face_vid, face_tolerance, video_position], outputs=image_output) | |
face_swap_ui.queue().launch() | |
#face_swap_ui.launch() | |
if __name__ == "__main__": | |
app = FaceAnalysis(name='buffalo_l') | |
app.prepare(ctx_id=0, det_size=(640, 640)) | |
swapper = insightface.model_zoo.get_model('inswapper_128.onnx', download=True, download_zip=True) | |
create_interface() |