SwapUI / app.py
victorisgeek's picture
Update app.py
9f24b16 verified
raw
history blame
13.2 kB
import numpy as np
import cv2
import os
import insightface
from insightface.app import FaceAnalysis
from insightface.data import get_image as ins_get_image
import gradio as gr
theme = gr.themes.Default(
font=['Helvetica', 'ui-sans-serif', 'system-ui', 'sans-serif'],
font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'],
).set(
border_color_primary='#c5c5d2',
button_large_padding='6px 12px',
body_text_color_subdued='#484848',
background_fill_secondary='#eaeaea'
)
def add_bbox_padding(bbox, margin=5):
return [
bbox[0] - margin,
bbox[1] - margin,
bbox[2] + margin,
bbox[3] + margin]
def select_handler(img, evt: gr.SelectData):
faces = app.get(img)
faces = sorted(faces, key = lambda x : x.bbox[0])
cropped_image = []
face_index = -1
sel_face_index = 0
print("Coords: ", evt.index[0],evt.index[1])
for face in faces:
box = face.bbox.astype(np.int32)
face_index = face_index + 1
if point_in_box((box[0], box[1]),(box[2],box[3]),(evt.index[0],evt.index[1])) == True:
# print("True ", face_index)
# print("Bbox org: ", box)
# Add ~25% margin to the box so the face is recognized correctly
margin = int((box[2]-box[0]) * 0.35)
box = add_bbox_padding(box,margin)
box = np.clip(box,0,None)
print("Bbox exp: ", box)
sel_face_index = face_index
cropped_image = img[box[1]:box[3],box[0]:box[2]]
return cropped_image, sel_face_index
def point_in_box(bl, tr, p) :
if (p[0] > bl[0] and p[0] < tr[0] and p[1] > bl[1] and p[1] < tr[1]) :
return True
else:
return False
def get_faces(img):
faces = app.get(img)
faces = sorted(faces, key = lambda x : x.bbox[0])
#boxed_faces = app.draw_on(img, faces)
#for i in range(len(faces)):
# face = faces[i]
# box = face.bbox.astype(np.int32)
# cv2.putText(boxed_faces,'Face#:%d'%(i), (box[0]-1, box[3]+14),cv2.FONT_HERSHEY_COMPLEX,0.7,(0,0,255),2)
return img, len(faces)
def swap_face_fct(img_source,face_index,img_swap_face):
faces = app.get(img_source)
faces = sorted(faces, key = lambda x : x.bbox[0])
src_face = app.get(img_swap_face)
src_face = sorted(src_face, key = lambda x : x.bbox[0])
#print("index:",faces)
res = swapper.get(img_source, faces[face_index], src_face[0], paste_back=True)
return res
def swap_video_fct(video_path, output_path, source_face, destination_face, tolerance, preview=-1, progress=gr.Progress()):
# Get the Destination Face parameters (the face which should be swapped)
dest_face = app.get(destination_face)
dest_face = sorted(dest_face, key = lambda x : x.bbox[0])
if(len(dest_face) == 0):
print("💡 No dest face found")
return -1
dest_face_feats = []
dest_face_feats.append(dest_face[0].normed_embedding)
dest_face_feats = np.array(dest_face_feats, dtype=np.float32)
# Get the source face parameters (the face that replaces the original)
src_face = app.get(source_face)
src_face = sorted(src_face, key = lambda x : x.bbox[0])
if(len(src_face) == 0):
print("🚨 No source face found")
return -1
cap = cv2.VideoCapture(video_path)
ret, frame = cap.read()
fps = int(cap.get(cv2.CAP_PROP_FPS))
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fourcc = cv2.VideoWriter_fourcc(*'avc1')
# Use the same tmp dir from gradio if no output path is set
if(len(output_path) > 0):
out_path = output_path
else:
out_path = os.path.dirname(video_path) + "/out.mp4"
if preview == -1:
for_range = range(frame_count)
video_out = cv2.VideoWriter(out_path,fourcc,fps,(width,height))
else:
for_range = range(preview-1,preview)
for i in for_range:
progress(i/frame_count, desc="⏳Processing")
cap.set(cv2.CAP_PROP_POS_FRAMES, i)
ret, frame = cap.read()
#frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Find all faces in the current frame
faces = app.get(frame)
faces = sorted(faces, key = lambda x : x.bbox[0])
# No face in Scene => copy input frame
if(len(faces) > 0):
feats = []
for face in faces:
feats.append(face.normed_embedding)
feats = np.array(feats, dtype=np.float32)
sims = np.dot(dest_face_feats, feats.T)
print(sims)
# find the index of the most similar face
max_index = np.argmax(sims)
print("Sim:", max_index)
if(sims[0][max_index]*100 >= (100-tolerance)):
frame = swapper.get(frame, faces[max_index], src_face[0], paste_back=True)
if preview == -1:
video_out.write(frame)
if preview == -1:
video_out.release()
return out_path
else:
return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
ins_get_image
def analyze_video(video_path):
cap = cv2.VideoCapture(video_path)
fps = int(cap.get(cv2.CAP_PROP_FPS))
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
length = frame_count/fps
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
return f"Resolution: {width}x{height}\nLength: {length}\nFps: {fps}\nFrames: {frame_count}"
def update_slider(video_path):
cap = cv2.VideoCapture(video_path)
fps = int(cap.get(cv2.CAP_PROP_FPS))
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
length = frame_count/fps
return gr.update(minimum=0,maximum=frame_count,value=frame_count/2)
def show_preview(video_path, frame_number):
cap = cv2.VideoCapture(video_path)
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
ret, frame = cap.read()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
return frame
def create_interface():
title = '# 🧸FaceSwap UI'
with gr.Blocks(theme='WeixuanYuan/Base_dark') as face_swap_ui:
with gr.Tab("📀 Swap Face Image"):
with gr.Row():
with gr.Column():
image_input = gr.Image(label='🎞️Input Image (📺 Click to select a face)', scale=0.5)
with gr.Row():
analyze_button = gr.Button("⌛ Analyze")
with gr.Row():
with gr.Column():
face_num = gr.Number(label='📹 Recognized Faces')
face_index_num = gr.Number(label='📀 Face Index', precision=0)
selected_face = gr.Image(label='💊Face to swap', interactive=False)
swap_face = gr.Image(label='🧪Swap Face')
swap_button = gr.Button("🧩 Swap")
with gr.Column():
image_output = gr.Image(label='📤Output Image',interactive=False)
#text_output = gr.Textbox(placeholder="What is your name?")
swap_button.click(fn=swap_face_fct, inputs=[image_input, face_index_num, swap_face], outputs=[image_output])
image_input.select(select_handler, image_input, [selected_face, face_index_num])
analyze_button.click(fn=get_faces, inputs=image_input, outputs=[image_input,face_num])
with gr.Tab("📺Swap Face Video"):
with gr.Row():
with gr.Column():
source_video = gr.Video()
video_info = gr.Textbox(label="📡Video Information")
gr.Markdown("🛠️Select a frame for preview with the slider. Then select the face which should be swapped by clicking on it with the cursor")
video_position = gr.Slider(label="📐Frame preview",interactive=True)
frame_preview = gr.Image(label="📏Frame preview")
face_index = gr.Textbox(label="📉Face-Index",interactive=False)
with gr.Row():
dest_face_vid = gr.Image(label="👑Face to swap",interactive=True)
source_face_vid = gr.Image(label="🔮New Face")
gr.Markdown("🔑The higher the tolerance the more likely a wrong face will be swapped. 30-40 is a good starting point.")
face_tolerance = gr.Slider(label="⏳Tolerance",value=40,interactive=True)
preview_video = gr.Button("🪞Preview")
video_file_path = gr.Text(label="🗳️Output Video path incl. file.mp4 (when left empty it will be put in the gradio temp dir)")
process_video = gr.Button("⌛Process")
with gr.Column():
with gr.Column(scale=1):
image_output = gr.Image()
output_video = gr.Video(interactive=False)
with gr.Column(scale=1):
pass
# Component Events
source_video.upload(fn=analyze_video,inputs=source_video,outputs=video_info)
video_info.change(fn=update_slider,inputs=source_video,outputs=video_position)
#preview_button.click(fn=show_preview,inputs=[source_video, video_position],outputs=frame_preview)
frame_preview.select(select_handler, frame_preview, [dest_face_vid, face_index ])
video_position.change(show_preview,inputs=[source_video, video_position],outputs=frame_preview)
process_video.click(fn=swap_video_fct,inputs=[source_video,video_file_path,source_face_vid,dest_face_vid, face_tolerance], outputs=output_video)
preview_video.click(fn=swap_video_fct,inputs=[source_video,video_file_path,source_face_vid,dest_face_vid, face_tolerance, video_position], outputs=image_output)
set_slider_range_event = set_slider_range_btn.click(
video_changed,
inputs=[video_input],
outputs=[start_frame, end_frame, video_fps],
)
trim_and_reload_event = trim_and_reload_btn.click(
fn=trim_and_reload,
inputs=[video_input, output_directory, output_name, start_frame, end_frame],
outputs=[video_input, info],
)
start_frame_event = start_frame.release(
fn=slider_changed,
inputs=[show_trim_preview_btn, video_input, start_frame],
outputs=[preview_image, preview_video],
show_progress=True,
)
end_frame_event = end_frame.release(
fn=slider_changed,
inputs=[show_trim_preview_btn, video_input, end_frame],
outputs=[preview_image, preview_video],
show_progress=True,
)
input_type.change(
update_radio,
inputs=[input_type],
outputs=[input_image_group, input_video_group, input_directory_group],
)
swap_option.change(
swap_option_changed,
inputs=[swap_option],
outputs=[age, specific_face, source_image_input],
)
apply_detection_settings.click(
analyse_settings_changed,
inputs=[detect_condition_dropdown, detection_size, detection_threshold],
outputs=[info],
)
src_specific_inputs = []
gen_variable_txt = ",".join(
[f"src{i+1}" for i in range(NUM_OF_SRC_SPECIFIC)]
+ [f"trg{i+1}" for i in range(NUM_OF_SRC_SPECIFIC)]
)
exec(f"src_specific_inputs = ({gen_variable_txt})")
swap_inputs = [
input_type,
image_input,
video_input,
direc_input,
source_image_input,
output_directory,
output_name,
keep_output_sequence,
swap_option,
age,
distance_slider,
face_enhancer_name,
enable_face_parser_mask,
mask_include,
mask_soft_kernel,
mask_soft_iterations,
blur_amount,
erode_amount,
face_scale,
enable_laplacian_blend,
crop_top,
crop_bott,
crop_left,
crop_right,
*src_specific_inputs,
]
swap_outputs = [
info,
preview_image,
output_directory_button,
output_video_button,
preview_video,
]
swap_event = swap_button.click(
fn=process, inputs=swap_inputs, outputs=swap_outputs, show_progress=True
)
cancel_button.click(
fn=stop_running,
inputs=None,
outputs=[info],
cancels=[
swap_event,
trim_and_reload_event,
set_slider_range_event,
start_frame_event,
end_frame_event,
],
show_progress=True,
)
output_directory_button.click(
lambda: open_directory(path=WORKSPACE), inputs=None, outputs=None
)
output_video_button.click(
lambda: open_directory(path=OUTPUT_FILE), inputs=None, outputs=None
)
if __name__ == "__main__":
app = FaceAnalysis(name='buffalo_l')
app.prepare(ctx_id=0, det_size=(640, 640))
swapper = insightface.model_zoo.get_model('inswapper_128.onnx', download=True, download_zip=True)
create_interface()