Spaces:
Sleeping
Sleeping
File size: 18,375 Bytes
6770b66 34ecf31 6770b66 34ecf31 6770b66 78c60dc 1b7cdc8 9b54478 cd41583 9b54478 cd41583 9b54478 78c60dc 6770b66 b6c56e9 6770b66 34ecf31 7e8dbcd 6770b66 b6c56e9 6770b66 7e8dbcd 34ecf31 6770b66 34ecf31 6770b66 34ecf31 6770b66 34ecf31 6770b66 34ecf31 6770b66 34ecf31 6770b66 34ecf31 933e0d6 34d8cdd 34ecf31 77d6909 b8ffacf 78c60dc e57c6f0 34ecf31 e57c6f0 34ecf31 d3cf103 cd41583 1b7cdc8 5b6aa1d 34ecf31 9e92598 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
from fasthtml.common import *
from fasthtml.components import *
from plotly import graph_objects as go
from fh_plotly import plotly2fasthtml
import pandas as pd
import json
from data_viewer import view_data, gen_random_id
from rich import print
import uuid
overview_text = P("Curated sources comprise high-quality datasets that contain domain-specificity. These sources, such as Arxiv, Wikipedia, and Stack Exchange, provide valuable data that is excluded from the web dataset mentioned above. Analyzing and processing non-web data can yield insights and opportunities for various applications. Details about each of the sources are provided below. ")
copyright_disclaimer = P("We respect the copyright of the data sources and have not included the controversial data that was used in Pile like YouTube and Opensubtitles, Reddit threads, and books.")
local_dedup_text = P("Each curated data source has been prepared using its specific rules and has been locally deduped using min-hash near deduplication. Details about the dataset are shown below in the table:")
data_pipeline_table = pd.DataFrame(
{
"Data Source": [
"Papers",
"Wikipedia",
"StackExchange",
"Europarl",
"Ubuntu IRC",
"HackerNews",
"PG-19",
"USPTO",
"Freelaw",
"DM Math",
],
"Percent Filtered": [
"15%",
"21%",
"<0.1%",
"1%",
"0.4%",
"60%",
"0.8%",
"22.5%",
"94%",
"0",
],
"Unique Document Percentage": [
"75.99%",
"91.91%",
"98.02%",
"98.87%",
"100%",
"99.91%",
"31.81%",
"99.94%",
"91.01%",
"0",
],
"2 - 5 Duplicates": [
"19.4%",
"4.7%",
"1.27%",
"0.94%",
"0",
"0.05%",
"20.03%",
"0.05%",
"6,87%",
"0",
],
"6 - 10 Duplicates": [
"2.89%",
"1.58%",
"0.35%",
"0.09%",
"0",
"0.02%",
"24.27%",
"0.01%",
"1.07%",
"0",
],
"11 - 100 Duplicates": [
"1.17%",
"1.76%",
"0.35%",
"0.1",
"0",
"0.02%",
"22.26%",
"0.01%",
"1.05%",
"0",
],
"101 - 1000 Duplicates": [
"0.01%",
"0.05%",
"0.01%",
"0",
"0",
"<0.01%",
"1.58%",
"<0.01%",
"0.01%",
"0",
],
"1001+ Duplicates": [
"<0.01%",
"<0.01%",
"<0.01%",
"0",
"0",
"<0.01%",
"0.06%",
"0",
"0",
"0",
],
}
)
table_html_data_pipe = data_pipeline_table.to_html(index=False, border=0)
table_div_data_pipe = Div(NotStr(table_html_data_pipe), style="margin: 40px;")
data_descriptions = pd.DataFrame(
{
"Source": [
"Papers - ArXiv",
"Papers - PhilPapers",
"Papers - S2ORC",
"Papers - PubMed Central",
"Papers - PubMed Abstract",
"Wikipedia",
"StackExchange",
"EuroParl",
"Ubuntu IRC",
"Freelaw",
"PG-19",
"USPTO",
"HackerNews",
"DM Maths",
],
"Description": [
"The ArXiv dataset is a vast collection of preprint research papers primarily in Mathematics, Computer Science, and Physics. Established in 1991, it offers high-quality text and mathematical knowledge, making it an invaluable resource for academic and scientific research. ArXiv papers are typically written in LaTeX, a popular typesetting system for these fields. We have extracted the information from latex and converted it into a text format.",
"Papers from the PhilPapers database, a comprehensive index and bibliography of philosophy research maintained by the Center for Digital Philosophy at the University of Western Ontario.",
"The Semantic Scholar Open Research Corpus (S2ORC) is a comprehensive dataset designed for natural language processing (NLP) and text-mining research over scientific papers. It includes rich metadata, and abstract and full-text content for millions of academic papers across various disciplines. This dataset is further divided into two components, S2ORC abstract and S2ORC full text.",
"The PubMed Central (PMC) dataset is a comprehensive collection of full-text biomedical and life sciences journal articles run by the United States of America’s National Center for Biotechnology Information (NCBI). It provides open access to a wealth of scientific literature, facilitating research and discovery in the medical and biological fields starting from 2008 by the NIH Public Access Policy. Articles in PMC are available for text mining and other secondary analyses, making it an invaluable resource for researchers and developers and other downstream tasks.",
"Abstracts of more than 30 million publications of biomedical literature from various sources mainly including biomedical articles run by the National Library of Medicine. ",
"Wikipedia is an encyclopedia form of high-quality text data used for language modeling. We have included filtered and deduplicated versions of complete Wikipedia data directly provided by the Wikipedia Foundation for more than 350 languages.",
"A network of question-and-answer websites on various subjects, including programming, science, mathematics, and more. This is one of the largest publicly available repositories for question-answer pairs. We have included comments also to include an overall discussion on each post.",
"A collection of multilingual parallel corpora of parliamentary debates from the European Parliament. This is a high-quality legacy dataset earlier used for translation tasks.",
"Chat logs from the Ubuntu Internet Relay Chat (IRC) channels on the Freenode IRC chat server. This data is also another form of dialog dataset on niche topics.",
"Legal documents and court cases from various jurisdictions provided by US-registered non-profit firm Free Law Project. We have included data from CourtListener which included millions of legal opinions from federal and state courts.",
"A collection of books from Project Gutenberg, a digital library of public domain works. This contains all the books that were published before 1919.",
"Patent documents from the United States Patent and Trademark Office.",
"High-quality dialog-based dataset where user comments on the links as the head post aggregated by Y Combinator.",
"DeepMind Maths dataset with generated questions from various topics like algebra, calculus, geometry, etc. Maths data is included to improve model reasoning abilities in the downstream tasks.",
],
}
)
table_html_desc = data_descriptions.to_html(index=False, border=0)
table_desc = Div(NotStr(table_html_desc), style="margin: 40px;")
data_sources = [
"Freelaw",
"Wikipedia",
"PhilPapers",
"Arxiv",
"S2ORC",
"S2ORC Abstract",
"Pubmed",
"USPTO",
"Hackernews",
"Ubuntu IRC",
"StackExchange",
"DM Maths",
"PG19",
"Europarl",
]
def get_data(data_source: str = "Freelaw", doc_id: int = 3, target: str = "foo"):
doc_id = max(0, min(int(doc_id), 9))
if data_source == "Freelaw":
raw_sample_doc = json.load(open("data/curated_samples/freelaw_raw.json"))
extracted_sample_doc = json.load(
open("data/curated_samples/freelaw_extract.json")
)
elif data_source == "Wikipedia":
raw_sample_doc = extracted_sample_doc = json.load(
open("data/curated_samples/wiki.json")
)
elif data_source == "StackExchange":
raw_sample_doc = json.load(open("data/curated_samples/stackexchange_raw.json"))
extracted_sample_doc = json.load(
open("data/curated_samples/stackexchange_extract.json")
)
elif data_source == "PhilPapers":
raw_sample_doc = extracted_sample_doc = json.load(
open("data/curated_samples/philpapers_raw.json")
)
elif data_source == "Arxiv":
raw_sample_doc = json.load(open("data/curated_samples/arxiv_raw.json"))
extracted_sample_doc = json.load(
open("data/curated_samples/arxiv_extract.json")
)
elif data_source == "S2ORC":
raw_sample_doc = extracted_sample_doc = json.load(
open("data/curated_samples/s2orc_raw.json")
)
elif data_source == "S2ORC Abstract":
raw_sample_doc = extracted_sample_doc = json.load(
open("data/curated_samples/s2orc_abstract_raw.json")
)
elif data_source == "Pubmed":
raw_sample_doc = json.load(open("data/curated_samples/pubmed_raw.json"))
extracted_sample_doc = json.load(
open("data/curated_samples/pubmed_extract.json")
)
elif data_source == "DM Maths":
raw_sample_doc = json.load(open("data/curated_samples/dm_maths_raw.json"))
extracted_sample_doc = json.load(
open("data/curated_samples/dm_maths_extract.json")
)
elif data_source == "PG19":
raw_sample_doc = extracted_sample_doc = json.load(
open("data/curated_samples/pg19_raw.json")
)
elif data_source == "Europarl":
raw_sample_doc = extracted_sample_doc = json.load(
open("data/curated_samples/europarl_raw.json")
)
else:
raw_sample_doc = extracted_sample_doc = [{} for _ in range(10)]
raw_json = raw_sample_doc[doc_id]
extracted_json = extracted_sample_doc[doc_id]
return view_data(
raw_json,
extracted_json,
doc_id=doc_id,
data_source=data_source,
data_sources=data_sources,
target=target,
)
def get_chart_28168342():
fig = go.Figure()
filter_names = [
"Download",
"Language",
"Min word count",
"Title Abstract",
"Majority language",
"Paragraph count",
"Frequency",
"Unigram log probability",
"Local dedup",
]
data_sources = [
("Wikipedia", [100, 90, 80, 70, 60, 50, 40, 30, 20]),
("Freelaw", [100, 90, 80, 70, 60, 50, 40, 20, 20]),
("DM Maths", [100, 90, 80, 70, 60, 40, 40, 30, 20]),
("USPTO", [100, 90, 80, 70, 60, 40, 40, 30, 20]),
("PG19", [100, 90, 80, 70, 60, 40, 40, 30, 20]),
("Hackernews", [100, 90, 80, 70, 60, 40, 40, 30, 20]),
("Ubuntu IRC", [100, 90, 80, 70, 60, 40, 40, 30, 20]),
("Europarl", [100, 90, 80, 70, 60, 40, 40, 30, 20]),
("StackExchange", [100, 90, 80, 70, 60, 40, 40, 30, 20]),
("Arxiv", [100, 90, 80, 70, 60, 40, 40, 30, 20]),
("S2ORC", [100, 90, 80, 70, 60, 40, 40, 30, 20]),
("S2ORC Abstract", [100, 90, 80, 70, 60, 40, 40, 30, 20]),
("PubMed Central", [100, 90, 80, 70, 60, 40, 40, 30, 20]),
("PubMed Central Abstract", [100, 90, 80, 70, 60, 40, 40, 30, 20]),
("PhilPapers", [100, 90, 80, 70, 60, 40, 40, 30, 20]),
]
for name, x_values in data_sources:
fig.add_trace(
go.Funnel(
name=name,
orientation="h",
y=filter_names,
x=x_values,
textinfo="value+percent total",
textposition="inside",
)
)
fig.update_layout(height=500, plot_bgcolor="rgba(0,0,0,0)")
return fig
def curated(request):
# Partial Updates
params = dict(request.query_params)
if target := params.get("target"):
if data_source := params.get(f"data_source_{target}"):
return get_data(
data_source, params.get(f"doc_id_{target}", 3), params.get("target")
)
if doc_id := params.get(f"doc_id_{target}"):
return get_data(
params.get(f"data_source_{target}"), doc_id, params.get("target")
)
data_preparation_steps = pd.DataFrame(
{
"Method": [
"HTTP/FTP dumps",
"Web crawling",
"Archive snapshot",
"Generated",
"Curated",
],
"Description": [
"Acquiring data from HTTP/FTP dumps",
"Crawling websites to extract data",
"Working with archive dumps",
"Generating synthetic data",
"High quality curated data",
],
"Source": [
"Freelaw | Wikipedia | PhilPapers | Arxiv | S2ORC | Pubmeds",
"USPTO | Hackernews | Ubuntu IRC",
"StackExchange",
"DM Maths",
"PG19 | Europarl",
],
}
)
table_html = data_preparation_steps.to_html(index=False, border=0)
table_div = Div(NotStr(table_html), style="margin: 40px;")
text = P("""This initial stage serves as the foundation for the entire
process. Here, we focus on acquiring and extracting the raw data, which can
come from various sources such as crawling websites, using HTTP/FTP dumps,
or working with archive dumps. For instance, to download and prepare a
dataset, we can specific downloaders based on the data source. Each dataset
might have its own downloader script which can be updated in real time to
handle changes in the data source. Here is a general outline of the data
preparation process: It's worth noting that some pipelines might require
invoking additional functions or scripts to handle specific data sources or
formats. These helper scripts can be located within specific directories
or modules dedicated to the dataset.""")
data_preparation_div = Div(
H3("Data Preparation"),
text,
table_div,
Div(
get_data(target=gen_random_id()),
style="border: 1px solid #ccc; padding: 20px;",
),
)
text = P("""Data preprocessing is a crucial step in the data science
pipeline. It involves cleaning and transforming raw data into a format that
is suitable for analysis. This process includes handling missing values,
normalizing data, encoding categorical variables, and more.""")
preprocessing_steps = pd.DataFrame(
{
"Step": [
"Language Filter",
"Min Word Count",
"Title Abstract",
"Majority Language",
"Paragraph Count",
"Frequency",
"Unigram Log Probability",
],
"Description": [
"Filtering data based on language",
"Setting a minimum word count threshold",
"Extracting information from the title and abstract",
"Identifying the majority language in the dataset",
"Counting the number of paragraphs in each document",
"Calculating the frequency of each word in the dataset",
"Calculating the log probability of each unigram",
],
"Need": [
"To remove documents in unwanted languages",
"To filter out documents with very few words",
"To extract relevant information for analysis",
"To understand the distribution of languages in the dataset",
"To analyze the structure and length of documents",
"To identify important words in the dataset",
"To measure the significance of individual words",
],
"Pros": [
"Improves data quality by removing irrelevant documents",
"Filters out low-quality or incomplete documents",
"Provides additional information for analysis",
"Enables language-specific analysis and insights",
"Helps understand the complexity and content of documents",
"Identifies important terms and topics in the dataset",
"Quantifies the importance of individual words",
],
"Cons": [
"May exclude documents in less common languages",
"May remove documents with valuable information",
"May introduce bias in the analysis",
"May not accurately represent the language distribution",
"May not capture the complexity of document structure",
"May be sensitive to noise and outliers",
"May not capture the semantic meaning of words",
],
}
)
table_html = preprocessing_steps.to_html(index=False, border=0)
table_div = Div(NotStr(table_html), style="margin: 40px;")
data_preprocessing_div = Div(H3("Data Preprocessing"), text, table_div)
return Div(
Section(
H2("Curated Sources: Overview"),
overview_text,
copyright_disclaimer,
table_desc,
H2("Curated Sources: Data Gathering and Filtering"),
H3("Data Acquisition"),
data_preparation_div,
H3("Data Filtering"),
data_preprocessing_div,
plotly2fasthtml(get_chart_28168342()),
H2("Local Deduplication"),
local_dedup_text,
table_div_data_pipe,
id="inner-text",
)
) |