Spaces:
Sleeping
Sleeping
victormiller
commited on
Commit
•
38049d1
1
Parent(s):
ffdb8be
Update overview.py
Browse files- overview.py +42 -0
overview.py
CHANGED
@@ -209,6 +209,47 @@ dataset_sources = pd.DataFrame(
|
|
209 |
table_html = dataset_sources.to_html(index=False, border=0)
|
210 |
table_div1 = Div(NotStr(table_html), style="margin: 40px;")
|
211 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
quality_text = P("""The quality and size of a pre-training dataset play a crucial role in the performance of large language models (LLMs).
|
213 |
The community has introduced a variety of datasets for this purpose, including purely web-based datasets like RefinedWeb{citation_obj.display_citation("refinedweb")}, RedPajama-Data-V2{citation_obj.display_citation("redpajama-v2")}, DCLM{citation_obj.display_citation("dclm")}, and FineWeb{citation_obj.display_citation("fineweb")},
|
214 |
as well as comprehensive datasets derived from multiple highly-curated data sources such as The Pile{citation_obj.display_citation("thepile")}, RedPajama-Data-V1{citation_obj.display_citation("redpajama-v1")}, and Dolma{citation_obj.display_citation("dolma")}.
|
@@ -239,6 +280,7 @@ def overview():
|
|
239 |
table_div,
|
240 |
P("Table 2: Basic TxT360 Statistics."),
|
241 |
table_div1,
|
|
|
242 |
id="inner-text",
|
243 |
)
|
244 |
)
|
|
|
209 |
table_html = dataset_sources.to_html(index=False, border=0)
|
210 |
table_div1 = Div(NotStr(table_html), style="margin: 40px;")
|
211 |
|
212 |
+
|
213 |
+
def get_curated_chart():
|
214 |
+
# Dataset
|
215 |
+
data = {
|
216 |
+
'Source': ['ArXiv', 'PubMed Central', 'PubMed Abstract', 'S2ORC Full Text', 'S2ORC Abstract', 'PhilPapers', 'Wikipedia', 'StackExchange', 'EuroParl', 'Ubuntu IRC', 'Freelaw', 'PG19', 'USPTO', 'HackerNews', 'DM Maths'],
|
217 |
+
'Category': ['Papers', 'Papers', 'Papers', 'Papers', 'Papers', 'Papers', 'Internet', 'Conversational', 'Legal/Formal', 'Conversational', 'Legal/Formal', 'Books', 'Legal/Formal', 'Conversational', 'Reasoning'],
|
218 |
+
'Count': [100, 200, 150, 120, 80, 90, 300, 250, 180, 150, 150, 250, 180, 120, 90],
|
219 |
+
'Details': [
|
220 |
+
'A repository of scientific papers in various disciplines, including computer science, physics, mathematics, and more.',
|
221 |
+
'A database of biomedical and life sciences research articles.',
|
222 |
+
'Abstracts of biomedical literature from various sources.',
|
223 |
+
'Full-text articles from the Semantic Scholar Open Research Corpus.',
|
224 |
+
'Abstracts of articles from the Semantic Scholar Open Research Corpus.',
|
225 |
+
'Papers from the PhilPapers database, a comprehensive index and bibliography of philosophy research.',
|
226 |
+
'A collaborative online encyclopedia that covers a wide range of topics.',
|
227 |
+
'A network of question-and-answer websites on various subjects, including programming, science, mathematics, and more.',
|
228 |
+
'A collection of multilingual parallel corpora of parliamentary debates from the European Parliament.',
|
229 |
+
'Chat logs from the Ubuntu Internet Relay Chat (IRC) channels.',
|
230 |
+
'Legal documents and court cases from various jurisdictions.',
|
231 |
+
'A collection of books from Project Gutenberg, a digital library of public domain works.',
|
232 |
+
'Patent documents from the United States Patent and Trademark Office.',
|
233 |
+
'User-generated news and discussion platform focused on technology and startups.',
|
234 |
+
'Deep Mind Maths dataset with generated questions.'
|
235 |
+
]
|
236 |
+
}
|
237 |
+
# Calculate percentage for each data source
|
238 |
+
total_count = sum(data['Count'])
|
239 |
+
data['Percentage'] = [count / total_count * 100 for count in data['Count']]
|
240 |
+
|
241 |
+
# Create treemap
|
242 |
+
fig = px.treemap(data, path=['Category', 'Source'], values='Count', hover_data=['Details', 'Percentage'], hover_name='Source')
|
243 |
+
|
244 |
+
# Set the size of the chart
|
245 |
+
fig.update_layout(width=800, height=600)
|
246 |
+
|
247 |
+
# Display treemap
|
248 |
+
st.plotly_chart(fig)
|
249 |
+
|
250 |
+
|
251 |
+
|
252 |
+
|
253 |
quality_text = P("""The quality and size of a pre-training dataset play a crucial role in the performance of large language models (LLMs).
|
254 |
The community has introduced a variety of datasets for this purpose, including purely web-based datasets like RefinedWeb{citation_obj.display_citation("refinedweb")}, RedPajama-Data-V2{citation_obj.display_citation("redpajama-v2")}, DCLM{citation_obj.display_citation("dclm")}, and FineWeb{citation_obj.display_citation("fineweb")},
|
255 |
as well as comprehensive datasets derived from multiple highly-curated data sources such as The Pile{citation_obj.display_citation("thepile")}, RedPajama-Data-V1{citation_obj.display_citation("redpajama-v1")}, and Dolma{citation_obj.display_citation("dolma")}.
|
|
|
280 |
table_div,
|
281 |
P("Table 2: Basic TxT360 Statistics."),
|
282 |
table_div1,
|
283 |
+
plotly2fasthtml(get_curated_chart()),
|
284 |
id="inner-text",
|
285 |
)
|
286 |
)
|