Spaces:
Runtime error
Runtime error
File size: 12,305 Bytes
2d2f0f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
# Tune-A-Video
This repository is the official implementation of [Tune-A-Video](https://arxiv.org/abs/2212.11565).
**[Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation](https://arxiv.org/abs/2212.11565)**
<br/>
[Jay Zhangjie Wu](https://zhangjiewu.github.io/),
[Yixiao Ge](https://geyixiao.com/),
[Xintao Wang](https://xinntao.github.io/),
[Stan Weixian Lei](),
[Yuchao Gu](https://ycgu.site/),
[Yufei Shi](),
[Wynne Hsu](https://www.comp.nus.edu.sg/~whsu/),
[Ying Shan](https://scholar.google.com/citations?user=4oXBp9UAAAAJ&hl=en),
[Xiaohu Qie](https://scholar.google.com/citations?user=mk-F69UAAAAJ&hl=en),
[Mike Zheng Shou](https://sites.google.com/view/showlab)
<br/>
[![Project Website](https://img.shields.io/badge/Project-Website-orange)](https://tuneavideo.github.io/)
[![arXiv](https://img.shields.io/badge/arXiv-2212.11565-b31b1b.svg)](https://arxiv.org/abs/2212.11565)
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/Tune-A-Video-library/Tune-A-Video-Training-UI)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/showlab/Tune-A-Video/blob/main/notebooks/Tune-A-Video.ipynb)
<p align="center">
<img src="https://tuneavideo.github.io/assets/overview.png" width="800px"/>
<br>
<em>Given a video-text pair as input, our method, Tune-A-Video, fine-tunes a pre-trained text-to-image diffusion model for text-to-video generation.</em>
</p>
## News
- [02/22/2023] Improved consistency using DDIM inversion.
- [02/08/2023] [Colab demo](https://colab.research.google.com/github/showlab/Tune-A-Video/blob/main/notebooks/Tune-A-Video.ipynb) released!
- [02/03/2023] Pre-trained Tune-A-Video models are available on [Hugging Face Library](https://huggingface.co/Tune-A-Video-library)!
- [01/28/2023] New Feature: tune a video on personalized [DreamBooth](https://dreambooth.github.io/) models.
- [01/28/2023] Code released!
## Setup
### Requirements
```shell
pip install -r requirements.txt
```
Installing [xformers](https://github.com/facebookresearch/xformers) is highly recommended for more efficiency and speed on GPUs.
To enable xformers, set `enable_xformers_memory_efficient_attention=True` (default).
### Weights
**[Stable Diffusion]** [Stable Diffusion](https://arxiv.org/abs/2112.10752) is a latent text-to-image diffusion model capable of generating photo-realistic images given any text input. The pre-trained Stable Diffusion models can be downloaded from Hugging Face (e.g., [Stable Diffusion v1-4](https://huggingface.co/CompVis/stable-diffusion-v1-4), [v2-1](https://huggingface.co/stabilityai/stable-diffusion-2-1)). You can also use fine-tuned Stable Diffusion models trained on different styles (e.g, [Modern Disney](https://huggingface.co/nitrosocke/mo-di-diffusion), [Redshift](https://huggingface.co/nitrosocke/redshift-diffusion), etc.).
**[DreamBooth]** [DreamBooth](https://dreambooth.github.io/) is a method to personalize text-to-image models like Stable Diffusion given just a few images (3~5 images) of a subject. Tuning a video on DreamBooth models allows personalized text-to-video generation of a specific subject. There are some public DreamBooth models available on [Hugging Face](https://huggingface.co/sd-dreambooth-library) (e.g., [mr-potato-head](https://huggingface.co/sd-dreambooth-library/mr-potato-head)). You can also train your own DreamBooth model following [this training example](https://github.com/huggingface/diffusers/tree/main/examples/dreambooth).
## Usage
### Training
To fine-tune the text-to-image diffusion models for text-to-video generation, run this command:
```bash
accelerate launch train_tuneavideo.py --config="configs/man-skiing.yaml"
```
Note: Tuning a 24-frame video usually takes `300~500` steps, about `10~15` minutes using one A100 GPU.
Reduce `n_sample_frames` if your GPU memory is limited.
### Inference
Once the training is done, run inference:
```python
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
from tuneavideo.models.unet import UNet3DConditionModel
from tuneavideo.util import save_videos_grid
import torch
pretrained_model_path = "./checkpoints/stable-diffusion-v1-4"
my_model_path = "./outputs/man-skiing"
unet = UNet3DConditionModel.from_pretrained(my_model_path, subfolder='unet', torch_dtype=torch.float16).to('cuda')
pipe = TuneAVideoPipeline.from_pretrained(pretrained_model_path, unet=unet, torch_dtype=torch.float16).to("cuda")
pipe.enable_xformers_memory_efficient_attention()
pipe.enable_vae_slicing()
prompt = "spider man is skiing"
ddim_inv_latent = torch.load(f"{my_model_path}/inv_latents/ddim_latent-500.pt").to(torch.float16)
video = pipe(prompt, latents=ddim_inv_latent, video_length=24, height=512, width=512, num_inference_steps=50, guidance_scale=12.5).videos
save_videos_grid(video, f"./{prompt}.gif")
```
## Results
### Pretrained T2I (Stable Diffusion)
<table class="center">
<tr>
<td style="text-align:center;"><b>Input Video</b></td>
<td style="text-align:center;" colspan="3"><b>Output Video</b></td>
</tr>
<tr>
<td><img src="https://tuneavideo.github.io/assets/data/man-skiing.gif"></td>
<td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/man-skiing/spiderman-beach.gif"></td>
<td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/man-skiing/wonder-woman.gif"></td>
<td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/man-skiing/pink-sunset.gif"></td>
</tr>
<tr>
<td width=25% style="text-align:center;color:gray;">"A man is skiing"</td>
<td width=25% style="text-align:center;">"Spider Man is skiing on the beach, cartoon style”</td>
<td width=25% style="text-align:center;">"Wonder Woman, wearing a cowboy hat, is skiing"</td>
<td width=25% style="text-align:center;">"A man, wearing pink clothes, is skiing at sunset"</td>
</tr>
<tr>
<td><img src="https://tuneavideo.github.io/assets/data/rabbit-watermelon.gif"></td>
<td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/rabbit-watermelon/rabbit.gif"></td>
<td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/rabbit-watermelon/cat.gif"></td>
<td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/rabbit-watermelon/puppy.gif"></td>
</tr>
<tr>
<td width=25% style="text-align:center;color:gray;">"A rabbit is eating a watermelon"</td>
<td width=25% style="text-align:center;">"A rabbit is <del>eating a watermelon</del> on the table"</td>
<td width=25% style="text-align:center;">"A cat with sunglasses is eating a watermelon on the beach"</td>
<td width=25% style="text-align:center;">"A puppy is eating a cheeseburger on the table, comic style"</td>
</tr>
<tr>
<td><img src="https://tuneavideo.github.io/assets/data/car-turn.gif"></td>
<td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/car-turn/porsche-beach.gif"></td>
<td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/car-turn/car-cartoon.gif"></td>
<td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/car-turn/car-snow.gif"></td>
</tr>
<tr>
<td width=25% style="text-align:center;color:gray;">"A jeep car is moving on the road"</td>
<td width=25% style="text-align:center;">"A Porsche car is moving on the beach"</td>
<td width=25% style="text-align:center;">"A car is moving on the road, cartoon style"</td>
<td width=25% style="text-align:center;">"A car is moving on the snow"</td>
</tr>
<tr>
<td><img src="https://tuneavideo.github.io/assets/data/man-basketball.gif"></td>
<td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/man-basketball/trump.gif"></td>
<td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/man-basketball/astronaut.gif"></td>
<td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/man-basketball/lego.gif"></td>
</tr>
<tr>
<td width=25% style="text-align:center;color:gray;">"A man is dribbling a basketball"</td>
<td width=25% style="text-align:center;">"Trump is dribbling a basketball"</td>
<td width=25% style="text-align:center;">"An astronaut is dribbling a basketball, cartoon style"</td>
<td width=25% style="text-align:center;">"A lego man in a black suit is dribbling a basketball"</td>
</tr>
<!-- <tr>
<td><img src="https://tuneavideo.github.io/assets/data/lion-roaring.gif"></td>
<td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/lion-roaring/tiger-roar.gif"></td>
<td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/lion-roaring/lion-vangogh.gif"></td>
<td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/lion-roaring/wolf-nyc.gif"></td>
</tr>
<tr>
<td width=25% style="text-align:center;color:gray;">"A lion is roaring"</td>
<td width=25% style="text-align:center;">"A tiger is roaring"</td>
<td width=25% style="text-align:center;">"A lion is roaring, Van Gogh style"</td>
<td width=25% style="text-align:center;">"A wolf is roaring in New York City"</td>
</tr> -->
</table>
### Pretrained T2I (personalized DreamBooth)
<img src="https://tuneavideo.github.io/assets/results/tuneavideo/modern-disney/modern-disney.png" width="240px"/>
<table class="center">
<tr>
<td style="text-align:center;"><b>Input Video</b></td>
<td style="text-align:center;" colspan="3"><b>Output Video</b></td>
</tr>
<tr>
<td><img src="https://tuneavideo.github.io/assets/data/bear-guitar.gif"></td>
<td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/modern-disney/bear-guitar/rabbit.gif"></td>
<td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/modern-disney/bear-guitar/prince.gif"></td>
<td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/modern-disney/bear-guitar/princess.gif"></td>
</tr>
<tr>
<td width=25% style="text-align:center;color:gray;">"A bear is playing guitar"</td>
<td width=25% style="text-align:center;">"A rabbit is playing guitar, modern disney style"</td>
<td width=25% style="text-align:center;">"A handsome prince is playing guitar, modern disney style"</td>
<td width=25% style="text-align:center;">"A magic princess with sunglasses is playing guitar on the stage, modern disney style"</td>
</tr>
</table>
<img src="https://tuneavideo.github.io/assets/results/tuneavideo/mr-potato-head/mr-potato-head.png" width="240px"/>
<table class="center">
<tr>
<td style="text-align:center;"><b>Input Video</b></td>
<td style="text-align:center;" colspan="3"><b>Output Video</b></td>
</tr>
<tr>
<td><img src="https://tuneavideo.github.io/assets/data/bear-guitar.gif"></td>
<td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/mr-potato-head/bear-guitar/lego-snow.gif"></td>
<td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/mr-potato-head/bear-guitar/sunglasses-beach.gif"></td>
<td><img src="https://tuneavideo.github.io/assets/results/tuneavideo/mr-potato-head/bear-guitar/van-gogh.gif"></td>
</tr>
<tr>
<td width=25% style="text-align:center;color:gray;">"A bear is playing guitar"</td>
<td width=25% style="text-align:center;">"Mr Potato Head, made of lego, is playing guitar on the snow"</td>
<td width=25% style="text-align:center;">"Mr Potato Head, wearing sunglasses, is playing guitar on the beach"</td>
<td width=25% style="text-align:center;">"Mr Potato Head is playing guitar in the starry night, Van Gogh style"</td>
</tr>
</table>
## Citation
If you make use of our work, please cite our paper.
```bibtex
@article{wu2022tuneavideo,
title={Tune-A-Video: One-Shot Tuning of Image Diffusion Models for Text-to-Video Generation},
author={Wu, Jay Zhangjie and Ge, Yixiao and Wang, Xintao and Lei, Stan Weixian and Gu, Yuchao and Hsu, Wynne and Shan, Ying and Qie, Xiaohu and Shou, Mike Zheng},
journal={arXiv preprint arXiv:2212.11565},
year={2022}
}
```
## Shoutouts
- This code builds on [diffusers](https://github.com/huggingface/diffusers). Thanks for open-sourcing!
- Thanks [hysts](https://github.com/hysts) for the awesome [gradio demo](https://huggingface.co/spaces/Tune-A-Video-library/Tune-A-Video-Training-UI).
|