Spaces:
Runtime error
Runtime error
File size: 8,266 Bytes
e5176ce 371bfd9 e5176ce 28662a3 e5176ce f527f9c 8963583 f527f9c e5176ce 8963583 e5176ce 8963583 e5176ce ab4a868 e5176ce ab4a868 e5176ce 8963583 e5176ce a163762 371bfd9 a163762 371bfd9 a163762 371bfd9 a163762 371bfd9 a163762 371bfd9 8963583 e5176ce 7fef50a e5176ce 371bfd9 e5176ce 7fef50a bb8b1f0 8963583 bb8b1f0 e5176ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
#!/usr/bin/env python
from __future__ import annotations
import os
import gradio as gr
from constants import MODEL_LIBRARY_ORG_NAME, SAMPLE_MODEL_REPO, UploadTarget
from inference import InferencePipeline
from trainer import Trainer
def create_training_demo(trainer: Trainer,
pipe: InferencePipeline | None = None) -> gr.Blocks:
hf_token = os.getenv('HF_TOKEN')
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
with gr.Box():
gr.Markdown('Training Data')
training_video = gr.File(label='Training video')
training_prompt = gr.Textbox(
label='Training prompt',
max_lines=1,
placeholder='A man is skiing')
gr.Markdown('''
- Upload a video and write a `Training Prompt` that describes the video.
''')
with gr.Column():
with gr.Box():
gr.Markdown('Training Parameters')
with gr.Row():
base_model = gr.Text(
label='Base Model',
value='CompVis/stable-diffusion-v1-4',
max_lines=1)
resolution = gr.Dropdown(choices=['512', '768'],
value='512',
label='Resolution',
visible=False)
with gr.Row():
tuned_model = gr.Text(
label='Path to tuned model',
value='xxx/ski-lego',
max_lines=1)
resolution = gr.Dropdown(choices=['512', '768'],
value='512',
label='Resolution',
visible=False)
input_token = gr.Text(label='Hugging Face Write Token',
placeholder='',
visible=False if hf_token else True)
with gr.Accordion('Advanced settings', open=False):
num_training_steps = gr.Number(
label='Number of Training Steps',
value=300,
precision=0)
learning_rate = gr.Number(label='Learning Rate',
value=0.000035)
cross_replace = gr.Number(label='Cross attention replace ratio',
value=0.2)
gradient_accumulation = gr.Number(
label='Number of Gradient Accumulation',
value=1,
precision=0)
seed = gr.Slider(label='Seed',
minimum=0,
maximum=100000,
step=1,
randomize=True,
value=0)
fp16 = gr.Checkbox(label='FP16', value=True)
use_8bit_adam = gr.Checkbox(label='Use 8bit Adam',
value=False)
checkpointing_steps = gr.Number(
label='Checkpointing Steps',
value=1000,
precision=0)
validation_epochs = gr.Number(
label='Validation Epochs', value=300, precision=0)
gr.Markdown('''
- The base model must be a Stable Diffusion model compatible with [diffusers](https://github.com/huggingface/diffusers) library.
- Expected time to complete: ~20 minutes with T4.
- You can check the training status by pressing the "Open logs" button if you are running this on your Space.
- Find the official github code [here](https://github.com/ShaoTengLiu/Video-P2P).
''')
with gr.Row():
with gr.Column():
gr.Markdown('Output Model')
output_model_name = gr.Text(label='Path to save your tuned model',
placeholder='ski-lego',
max_lines=1)
validation_prompt = gr.Text(
label='Validation Prompt',
placeholder=
'prompt to test the model, e.g: a Lego man is surfing')
blend_word_1 = gr.Text(
label='blend_word(source)',
placeholder=
'man')
blend_word_2 = gr.Text(
label='blend_word(target)',
placeholder=
'man')
eq_params_1 = gr.Text(
label='reweight_word',
placeholder=
'Lego')
eq_params_2 = gr.Text(
label='reweight_value',
placeholder=
'4')
with gr.Column():
gr.Markdown('Upload Settings')
with gr.Row():
upload_to_hub = gr.Checkbox(label='Upload model to Hub',
value=True)
use_private_repo = gr.Checkbox(label='Private', value=True)
delete_existing_repo = gr.Checkbox(
label='Delete existing repo of the same name',
value=False)
upload_to = gr.Radio(
label='Upload to',
choices=[_.value for _ in UploadTarget],
value=UploadTarget.MODEL_LIBRARY.value)
remove_gpu_after_training = gr.Checkbox(
label='Remove GPU after training',
value=False,
interactive=bool(os.getenv('SPACE_ID')),
visible=False)
run_button = gr.Button('Start Tuning')
with gr.Box():
gr.Markdown('Output message')
output_message = gr.Markdown()
if pipe is not None:
run_button.click(fn=pipe.clear)
run_button.click(
fn=trainer.run,
inputs=[
training_video, training_prompt, output_model_name,
delete_existing_repo, validation_prompt, base_model,
resolution, num_training_steps, learning_rate,
gradient_accumulation, seed, fp16, use_8bit_adam,
checkpointing_steps, validation_epochs, upload_to_hub,
use_private_repo, delete_existing_repo, upload_to,
remove_gpu_after_training, input_token, blend_word_1, blend_word_2, eq_params_1, eq_params_2
],
outputs=output_message)
run_button_p2p = gr.Button('Start P2P')
run_button_p2p.click(
fn=trainer.run_p2p,
inputs=[
training_video, training_prompt, output_model_name,
delete_existing_repo, validation_prompt, base_model,
resolution, num_training_steps, learning_rate,
gradient_accumulation, seed, fp16, use_8bit_adam,
checkpointing_steps, validation_epochs, upload_to_hub,
use_private_repo, delete_existing_repo, upload_to,
remove_gpu_after_training, input_token, blend_word_1, blend_word_2, eq_params_1, eq_params_2, tuned_model, cross_replace
],
outputs=output_message)
return demo
if __name__ == '__main__':
hf_token = os.getenv('HF_TOKEN')
trainer = Trainer(hf_token)
demo = create_training_demo(trainer)
demo.queue(max_size=1).launch(share=False)
|