File size: 8,266 Bytes
e5176ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371bfd9
e5176ce
 
 
 
 
 
 
 
 
 
28662a3
e5176ce
 
 
 
 
f527f9c
 
 
8963583
f527f9c
 
 
 
 
e5176ce
 
 
 
 
 
 
 
 
 
 
8963583
 
e5176ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8963583
e5176ce
 
ab4a868
e5176ce
ab4a868
e5176ce
 
 
 
 
8963583
 
e5176ce
 
 
 
a163762
371bfd9
a163762
371bfd9
 
 
a163762
371bfd9
a163762
371bfd9
 
 
a163762
371bfd9
 
 
8963583
e5176ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fef50a
e5176ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371bfd9
e5176ce
 
7fef50a
 
 
bb8b1f0
 
 
 
 
 
 
 
8963583
bb8b1f0
 
e5176ce
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#!/usr/bin/env python

from __future__ import annotations

import os

import gradio as gr

from constants import MODEL_LIBRARY_ORG_NAME, SAMPLE_MODEL_REPO, UploadTarget
from inference import InferencePipeline
from trainer import Trainer


def create_training_demo(trainer: Trainer,
                         pipe: InferencePipeline | None = None) -> gr.Blocks:
    hf_token = os.getenv('HF_TOKEN')
    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                with gr.Box():
                    gr.Markdown('Training Data')
                    training_video = gr.File(label='Training video')
                    training_prompt = gr.Textbox(
                        label='Training prompt',
                        max_lines=1,
                        placeholder='A man is skiing')
                    gr.Markdown('''
                        - Upload a video and write a `Training Prompt` that describes the video.
                        ''')

            with gr.Column():
                with gr.Box():
                    gr.Markdown('Training Parameters')
                    with gr.Row():
                        base_model = gr.Text(
                            label='Base Model',
                            value='CompVis/stable-diffusion-v1-4',
                            max_lines=1)
                        resolution = gr.Dropdown(choices=['512', '768'],
                                                 value='512',
                                                 label='Resolution',
                                                 visible=False)
                    with gr.Row():
                        tuned_model = gr.Text(
                            label='Path to tuned model',
                            value='xxx/ski-lego',
                            max_lines=1)
                        resolution = gr.Dropdown(choices=['512', '768'],
                                                 value='512',
                                                 label='Resolution',
                                                 visible=False)

                    input_token = gr.Text(label='Hugging Face Write Token',
                                          placeholder='',
                                          visible=False if hf_token else True)
                    with gr.Accordion('Advanced settings', open=False):
                        num_training_steps = gr.Number(
                            label='Number of Training Steps',
                            value=300,
                            precision=0)
                        learning_rate = gr.Number(label='Learning Rate',
                                                  value=0.000035)
                        cross_replace = gr.Number(label='Cross attention replace ratio',
                                                  value=0.2)
                        gradient_accumulation = gr.Number(
                            label='Number of Gradient Accumulation',
                            value=1,
                            precision=0)
                        seed = gr.Slider(label='Seed',
                                         minimum=0,
                                         maximum=100000,
                                         step=1,
                                         randomize=True,
                                         value=0)
                        fp16 = gr.Checkbox(label='FP16', value=True)
                        use_8bit_adam = gr.Checkbox(label='Use 8bit Adam',
                                                    value=False)
                        checkpointing_steps = gr.Number(
                            label='Checkpointing Steps',
                            value=1000,
                            precision=0)
                        validation_epochs = gr.Number(
                            label='Validation Epochs', value=300, precision=0)
                    gr.Markdown('''
                        - The base model must be a Stable Diffusion model compatible with [diffusers](https://github.com/huggingface/diffusers) library.
                        - Expected time to complete: ~20 minutes with T4.
                        - You can check the training status by pressing the "Open logs" button if you are running this on your Space.
                        - Find the official github code [here](https://github.com/ShaoTengLiu/Video-P2P).
                        ''')

        with gr.Row():
            with gr.Column():
                gr.Markdown('Output Model')
                output_model_name = gr.Text(label='Path to save your tuned model',
                                            placeholder='ski-lego',
                                            max_lines=1)
                validation_prompt = gr.Text(
                    label='Validation Prompt',
                    placeholder=
                    'prompt to test the model, e.g: a Lego man is surfing')
                blend_word_1 = gr.Text(
                    label='blend_word(source)',
                    placeholder=
                    'man')
                blend_word_2 = gr.Text(
                    label='blend_word(target)',
                    placeholder=
                    'man')
                eq_params_1 = gr.Text(
                    label='reweight_word',
                    placeholder=
                    'Lego')
                eq_params_2 = gr.Text(
                    label='reweight_value',
                    placeholder=
                    '4')
            with gr.Column():
                gr.Markdown('Upload Settings')
                with gr.Row():
                    upload_to_hub = gr.Checkbox(label='Upload model to Hub',
                                                value=True)
                    use_private_repo = gr.Checkbox(label='Private', value=True)
                    delete_existing_repo = gr.Checkbox(
                        label='Delete existing repo of the same name',
                        value=False)
                    upload_to = gr.Radio(
                        label='Upload to',
                        choices=[_.value for _ in UploadTarget],
                        value=UploadTarget.MODEL_LIBRARY.value)

        remove_gpu_after_training = gr.Checkbox(
            label='Remove GPU after training',
            value=False,
            interactive=bool(os.getenv('SPACE_ID')),
            visible=False)
        run_button = gr.Button('Start Tuning')

        with gr.Box():
            gr.Markdown('Output message')
            output_message = gr.Markdown()

        if pipe is not None:
            run_button.click(fn=pipe.clear)
        run_button.click(
            fn=trainer.run,
            inputs=[
                training_video, training_prompt, output_model_name,
                delete_existing_repo, validation_prompt, base_model,
                resolution, num_training_steps, learning_rate,
                gradient_accumulation, seed, fp16, use_8bit_adam,
                checkpointing_steps, validation_epochs, upload_to_hub,
                use_private_repo, delete_existing_repo, upload_to,
                remove_gpu_after_training, input_token, blend_word_1, blend_word_2, eq_params_1, eq_params_2
            ],
            outputs=output_message)
        
        run_button_p2p = gr.Button('Start P2P')
        run_button_p2p.click(
            fn=trainer.run_p2p,
            inputs=[
                training_video, training_prompt, output_model_name,
                delete_existing_repo, validation_prompt, base_model,
                resolution, num_training_steps, learning_rate,
                gradient_accumulation, seed, fp16, use_8bit_adam,
                checkpointing_steps, validation_epochs, upload_to_hub,
                use_private_repo, delete_existing_repo, upload_to,
                remove_gpu_after_training, input_token, blend_word_1, blend_word_2, eq_params_1, eq_params_2, tuned_model, cross_replace
            ],
            outputs=output_message)
    return demo


if __name__ == '__main__':
    hf_token = os.getenv('HF_TOKEN')
    trainer = Trainer(hf_token)
    demo = create_training_demo(trainer)
    demo.queue(max_size=1).launch(share=False)