Spaces:
Runtime error
Runtime error
import os | |
from typing import Optional, Union, Tuple, List, Callable, Dict | |
from tqdm.notebook import tqdm | |
import torch | |
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL | |
import torch.nn.functional as nnf | |
import numpy as np | |
import abc | |
import ptp_utils | |
import seq_aligner | |
import shutil | |
from torch.optim.adam import Adam | |
from PIL import Image | |
from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer | |
from einops import rearrange | |
from tuneavideo.models.unet import UNet3DConditionModel | |
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline | |
import cv2 | |
import argparse | |
from omegaconf import OmegaConf | |
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False) | |
MY_TOKEN = '' | |
LOW_RESOURCE = False | |
NUM_DDIM_STEPS = 50 | |
GUIDANCE_SCALE = 7.5 | |
MAX_NUM_WORDS = 77 | |
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu') | |
IRC = True | |
# need to adjust | |
cross_replace_steps = {'default_': .2,} | |
self_replace_steps = .5 | |
mask_th = (.3, .3) | |
video_len = 8 | |
def main( | |
pretrained_model_path: str, | |
image_path: str, | |
prompt: str, | |
prompts: Tuple[str], | |
blend_word: Tuple[str], | |
eq_params: Dict, | |
gif_folder: str, | |
gif_name_1: str, | |
gif_name_2: str, | |
IRC: bool, | |
): | |
blend_word = (((blend_word[0],), (blend_word[1],))) | |
eq_params["words"] = (eq_params["words"],) | |
eq_params["values"] = (eq_params["values"],) | |
eq_params = dict(eq_params) | |
prompts = list(prompts) | |
if not os.path.exists(gif_folder): | |
os.makedirs(gif_folder) | |
# Load the tokenizer | |
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer") | |
# Load models and create wrapper for stable diffusion | |
text_encoder = CLIPTextModel.from_pretrained( | |
pretrained_model_path, | |
subfolder="text_encoder", | |
) | |
vae = AutoencoderKL.from_pretrained( | |
pretrained_model_path, | |
subfolder="vae", | |
) | |
unet = UNet3DConditionModel.from_pretrained(pretrained_model_path, subfolder="unet") | |
ldm_stable = TuneAVideoPipeline( | |
vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
unet=unet, | |
scheduler=scheduler, | |
).to(device) | |
try: | |
ldm_stable.disable_xformers_memory_efficient_attention() | |
except AttributeError: | |
print("Attribute disable_xformers_memory_efficient_attention() is missing") | |
tokenizer = ldm_stable.tokenizer # Tokenizer of class: [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer) | |
# A tokenizer breaks a stream of text into tokens, usually by looking for whitespace (tabs, spaces, new lines). | |
class LocalBlend: | |
def get_mask(self, maps, alpha, use_pool): # alpha is a word map | |
k = 1 | |
maps = (maps * alpha).sum(-1).mean(2) # [2, 80, 1, 16, 16, 77], [2, 1, 1, 1, 1, 77] | |
if use_pool: | |
maps = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 +1), (1, 1), padding=(k, k)) | |
mask = nnf.interpolate(maps, size=(x_t.shape[3:])) | |
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0] | |
mask = mask.gt(self.th[1-int(use_pool)]) | |
mask = mask[:1] + mask | |
return mask | |
def __call__(self, x_t, attention_store, step): | |
self.counter += 1 | |
if self.counter > self.start_blend: | |
# attention_store["down_cross"]: 4, attention_store["up_cross"]:6, attention_store["down_cross"][0]: torch.Size([32, 1024, 77]) | |
maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3] | |
# maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, MAX_NUM_WORDS) for item in maps] | |
maps = [item.reshape(self.alpha_layers.shape[0], -1, 8, 16, 16, MAX_NUM_WORDS) for item in maps] | |
maps = torch.cat(maps, dim=2) | |
# self.alpha_layers: torch.Size([2, 1, 1, 1, 1, 77]) | |
mask = self.get_mask(maps, self.alpha_layers, True) | |
if self.substruct_layers is not None: | |
maps_sub = ~self.get_mask(maps, self.substruct_layers, False) | |
mask = mask * maps_sub | |
mask = mask.float() | |
mask = mask.reshape(-1, 1, mask.shape[-3], mask.shape[-2], mask.shape[-1]) | |
x_t = x_t[:1] + mask * (x_t - x_t[:1]) # line13 algorithm | |
return x_t | |
def __init__(self, prompts: List[str], words: [List[List[str]]], substruct_words=None, start_blend=0.2, th=(.3, .3)): | |
alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS) | |
for i, (prompt, words_) in enumerate(zip(prompts, words)): | |
if type(words_) is str: | |
words_ = [words_] | |
for word in words_: | |
ind = ptp_utils.get_word_inds(prompt, word, tokenizer) | |
alpha_layers[i, :, :, :, :, ind] = 1 | |
if substruct_words is not None: | |
substruct_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS) | |
for i, (prompt, words_) in enumerate(zip(prompts, substruct_words)): | |
if type(words_) is str: | |
words_ = [words_] | |
for word in words_: | |
ind = ptp_utils.get_word_inds(prompt, word, tokenizer) | |
substruct_layers[i, :, :, :, :, ind] = 1 | |
self.substruct_layers = substruct_layers.to(device) | |
else: | |
self.substruct_layers = None | |
self.alpha_layers = alpha_layers.to(device) | |
self.start_blend = int(start_blend * NUM_DDIM_STEPS) | |
self.counter = 0 | |
self.th=th | |
class EmptyControl: | |
def step_callback(self, x_t): | |
return x_t | |
def between_steps(self): | |
return | |
def __call__(self, attn, is_cross: bool, place_in_unet: str): | |
return attn | |
class AttentionControl(abc.ABC): | |
def step_callback(self, x_t): | |
return x_t | |
def between_steps(self): | |
return | |
def num_uncond_att_layers(self): | |
return self.num_att_layers if LOW_RESOURCE else 0 | |
def forward (self, attn, is_cross: bool, place_in_unet: str): | |
raise NotImplementedError | |
def __call__(self, attn, is_cross: bool, place_in_unet: str): | |
if self.cur_att_layer >= self.num_uncond_att_layers: | |
if LOW_RESOURCE: | |
attn = self.forward(attn, is_cross, place_in_unet) | |
else: | |
h = attn.shape[0] | |
attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet) | |
self.cur_att_layer += 1 | |
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers: | |
self.cur_att_layer = 0 | |
self.cur_step += 1 | |
self.between_steps() | |
return attn | |
def reset(self): | |
self.cur_step = 0 | |
self.cur_att_layer = 0 | |
def __init__(self): | |
self.cur_step = 0 | |
self.num_att_layers = -1 | |
self.cur_att_layer = 0 | |
class SpatialReplace(EmptyControl): | |
def step_callback(self, x_t): | |
if self.cur_step < self.stop_inject: | |
b = x_t.shape[0] | |
x_t = x_t[:1].expand(b, *x_t.shape[1:]) | |
return x_t | |
def __init__(self, stop_inject: float): | |
super(SpatialReplace, self).__init__() | |
self.stop_inject = int((1 - stop_inject) * NUM_DDIM_STEPS) | |
class AttentionStore(AttentionControl): | |
def get_empty_store(): | |
return {"down_cross": [], "mid_cross": [], "up_cross": [], | |
"down_self": [], "mid_self": [], "up_self": []} | |
def forward(self, attn, is_cross: bool, place_in_unet: str): | |
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}" | |
if attn.shape[1] <= 32 ** 2: # avoid memory overhead | |
self.step_store[key].append(attn) # 'down_self' torch.Size([32768, 8, 8]) | |
return attn | |
def between_steps(self): | |
if len(self.attention_store) == 0: | |
self.attention_store = self.step_store | |
else: | |
for key in self.attention_store: | |
for i in range(len(self.attention_store[key])): | |
self.attention_store[key][i] += self.step_store[key][i] | |
self.step_store = self.get_empty_store() | |
def get_average_attention(self): | |
average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store} | |
return average_attention | |
def reset(self): | |
super(AttentionStore, self).reset() | |
self.step_store = self.get_empty_store() | |
self.attention_store = {} | |
def __init__(self): | |
super(AttentionStore, self).__init__() | |
self.step_store = self.get_empty_store() | |
self.attention_store = {} | |
class AttentionControlEdit(AttentionStore, abc.ABC): | |
def step_callback(self, x_t): | |
if self.local_blend is not None: | |
x_t = self.local_blend(x_t, self.attention_store, self.cur_step) | |
return x_t | |
def replace_self_attention(self, attn_base, att_replace, place_in_unet): | |
if att_replace.shape[2] <= 32 ** 2: | |
attn_base = attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape) | |
return attn_base | |
else: | |
return att_replace | |
def replace_cross_attention(self, attn_base, att_replace): | |
raise NotImplementedError | |
def forward(self, attn, is_cross: bool, place_in_unet: str): | |
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet) | |
if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]): | |
h = attn.shape[0] // (self.batch_size) | |
attn = attn.reshape(self.batch_size, h, *attn.shape[1:]) | |
attn_base, attn_repalce = attn[0], attn[1:] | |
if is_cross: | |
alpha_words = self.cross_replace_alpha[self.cur_step] | |
attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce | |
attn[1:] = attn_repalce_new | |
else: | |
attn[1:] = self.replace_self_attention(attn_base, attn_repalce, place_in_unet) | |
attn = attn.reshape(self.batch_size * h, *attn.shape[2:]) | |
return attn | |
def __init__(self, prompts, num_steps: int, | |
cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]], | |
self_replace_steps: Union[float, Tuple[float, float]], | |
local_blend: Optional[LocalBlend]): | |
super(AttentionControlEdit, self).__init__() | |
self.batch_size = len(prompts) | |
self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, tokenizer).to(device) | |
if type(self_replace_steps) is float: | |
self_replace_steps = 0, self_replace_steps | |
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1]) | |
self.local_blend = local_blend | |
class AttentionReplace(AttentionControlEdit): | |
def replace_cross_attention(self, attn_base, att_replace): | |
return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper) | |
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, | |
local_blend: Optional[LocalBlend] = None): | |
super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend) | |
self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(device) | |
class AttentionRefine(AttentionControlEdit): | |
def replace_cross_attention(self, attn_base, att_replace): | |
attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3) | |
attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas) | |
return attn_replace | |
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, | |
local_blend: Optional[LocalBlend] = None): | |
super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend) | |
self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, tokenizer) | |
self.mapper, alphas = self.mapper.to(device), alphas.to(device) | |
self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1]) | |
class AttentionReweight(AttentionControlEdit): | |
def replace_cross_attention(self, attn_base, att_replace): | |
if self.prev_controller is not None: | |
attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace) | |
attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :] | |
return attn_replace | |
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, equalizer, | |
local_blend: Optional[LocalBlend] = None, controller: Optional[AttentionControlEdit] = None): | |
super(AttentionReweight, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend) | |
self.equalizer = equalizer.to(device) | |
self.prev_controller = controller | |
def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float], | |
Tuple[float, ...]]): | |
if type(word_select) is int or type(word_select) is str: | |
word_select = (word_select,) | |
equalizer = torch.ones(1, 77) | |
for word, val in zip(word_select, values): | |
inds = ptp_utils.get_word_inds(text, word, tokenizer) | |
equalizer[:, inds] = val | |
return equalizer | |
def aggregate_attention(attention_store: AttentionStore, res: int, from_where: List[str], is_cross: bool, select: int): | |
out = [] | |
attention_maps = attention_store.get_average_attention() | |
num_pixels = res ** 2 | |
for location in from_where: | |
for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]: | |
if item.shape[1] == num_pixels: # torch.Size([64, 256, 77]) all can pass | |
cross_maps = item.reshape(8, 8, res, res, item.shape[-1]) | |
out.append(cross_maps) | |
out = torch.cat(out, dim=1) | |
out = out.sum(1) / out.shape[1] | |
return out.cpu() | |
def make_controller(prompts: List[str], is_replace_controller: bool, cross_replace_steps: Dict[str, float], self_replace_steps: float, blend_words=None, equilizer_params=None, mask_th=(.3,.3)) -> AttentionControlEdit: | |
if blend_words is None: | |
lb = None | |
else: | |
lb = LocalBlend(prompts, blend_word, th=mask_th) | |
if is_replace_controller: | |
controller = AttentionReplace(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, local_blend=lb) | |
else: | |
controller = AttentionRefine(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, local_blend=lb) | |
if equilizer_params is not None: | |
eq = get_equalizer(prompts[1], equilizer_params["words"], equilizer_params["values"]) | |
controller = AttentionReweight(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, | |
self_replace_steps=self_replace_steps, equalizer=eq, local_blend=lb, controller=controller) | |
return controller | |
def load_512_seq(image_path, left=0, right=0, top=0, bottom=0, n_sample_frame=video_len, sampling_rate=1): | |
images = [] | |
for file in sorted(os.listdir(image_path)): | |
images.append(file) | |
n_images = len(images) | |
sequence_length = (n_sample_frame - 1) * sampling_rate + 1 | |
if n_images < sequence_length: | |
raise ValueError | |
frames = [] | |
for index in range(n_sample_frame): | |
p = os.path.join(image_path, images[index]) | |
image = np.array(Image.open(p).convert("RGB")) | |
h, w, c = image.shape | |
left = min(left, w-1) | |
right = min(right, w - left - 1) | |
top = min(top, h - left - 1) | |
bottom = min(bottom, h - top - 1) | |
image = image[top:h-bottom, left:w-right] | |
h, w, c = image.shape | |
if h < w: | |
offset = (w - h) // 2 | |
image = image[:, offset:offset + h] | |
elif w < h: | |
offset = (h - w) // 2 | |
image = image[offset:offset + w] | |
image = np.array(Image.fromarray(image).resize((512, 512))) | |
frames.append(image) | |
return np.stack(frames) | |
class NullInversion: | |
def prev_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]): | |
prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps | |
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] | |
alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod | |
beta_prod_t = 1 - alpha_prod_t | |
pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 | |
pred_sample_direction = (1 - alpha_prod_t_prev) ** 0.5 * model_output | |
prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction | |
return prev_sample | |
def next_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]): # doing inversion (math) | |
timestep, next_timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999), timestep | |
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod | |
alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep] | |
beta_prod_t = 1 - alpha_prod_t | |
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 | |
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output | |
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction | |
return next_sample | |
def get_noise_pred_single(self, latents, t, context): # latents: torch.Size([1, 4, 64, 64]); t: tensor(1); context: torch.Size([1, 77, 768]) | |
# formats are correct for video unet input; Tune-A-Video also predicts the residual | |
noise_pred = self.model.unet(latents, t, encoder_hidden_states=context)["sample"] # easy to out of mem | |
return noise_pred | |
def get_noise_pred(self, latents, t, is_forward=True, context=None): | |
latents_input = torch.cat([latents] * 2) | |
if context is None: | |
context = self.context | |
guidance_scale = 1 if is_forward else GUIDANCE_SCALE | |
noise_pred = self.model.unet(latents_input, t, encoder_hidden_states=context)["sample"] | |
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond) | |
if is_forward: | |
latents = self.next_step(noise_pred, t, latents) | |
else: | |
latents = self.prev_step(noise_pred, t, latents) | |
return latents | |
def latent2image(self, latents, return_type='np'): | |
latents = 1 / 0.18215 * latents.detach() | |
image = self.model.vae.decode(latents)['sample'] | |
if return_type == 'np': | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).numpy()[0] | |
image = (image * 255).astype(np.uint8) | |
return image | |
def latent2image_video(self, latents, return_type='np'): | |
latents = 1 / 0.18215 * latents.detach() | |
latents = latents[0].permute(1, 0, 2, 3) | |
image = self.model.vae.decode(latents)['sample'] | |
if return_type == 'np': | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).numpy() | |
image = (image * 255).astype(np.uint8) | |
return image | |
def image2latent(self, image): | |
with torch.no_grad(): | |
if type(image) is Image: | |
image = np.array(image) | |
if type(image) is torch.Tensor and image.dim() == 4: | |
latents = image | |
else: | |
image = torch.from_numpy(image).float() / 127.5 - 1 | |
image = image.permute(2, 0, 1).unsqueeze(0).to(device) | |
latents = self.model.vae.encode(image)['latent_dist'].mean | |
latents = latents * 0.18215 | |
return latents | |
def image2latent_video(self, image): | |
with torch.no_grad(): | |
image = torch.from_numpy(image).float() / 127.5 - 1 | |
image = image.permute(0, 3, 1, 2).to(device) | |
latents = self.model.vae.encode(image)['latent_dist'].mean | |
latents = rearrange(latents, "(b f) c h w -> b c f h w", b=1) | |
latents = latents * 0.18215 | |
return latents | |
def init_prompt(self, prompt: str): | |
uncond_input = self.model.tokenizer( | |
[""], padding="max_length", max_length=self.model.tokenizer.model_max_length, | |
return_tensors="pt" | |
) | |
uncond_embeddings = self.model.text_encoder(uncond_input.input_ids.to(self.model.device))[0] # len=2, uncond_embeddings | |
text_input = self.model.tokenizer( | |
[prompt], | |
padding="max_length", | |
max_length=self.model.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_embeddings = self.model.text_encoder(text_input.input_ids.to(self.model.device))[0] | |
self.context = torch.cat([uncond_embeddings, text_embeddings]) | |
self.prompt = prompt | |
def ddim_loop(self, latent): | |
uncond_embeddings, cond_embeddings = self.context.chunk(2) | |
all_latent = [latent] | |
latent = latent.clone().detach() | |
for i in range(NUM_DDIM_STEPS): | |
t = self.model.scheduler.timesteps[len(self.model.scheduler.timesteps) - i - 1] | |
# latent: torch.Size([1, 4, 8, 16, 16]) | |
# cond_embeddings: torch.Size([1, 77, 768]) | |
# noise_pred: torch.Size([1, 4, 8, 16, 16]) | |
noise_pred = self.get_noise_pred_single(latent, t, cond_embeddings) # use a unet | |
latent = self.next_step(noise_pred, t, latent) | |
all_latent.append(latent) | |
return all_latent | |
def scheduler(self): | |
return self.model.scheduler | |
def ddim_inversion(self, image): | |
latent = self.image2latent_video(image) | |
image_rec = self.latent2image_video(latent) # image: (512, 512, 3); latent: torch.Size([1, 4, 64, 64]) | |
ddim_latents = self.ddim_loop(latent) | |
return image_rec, ddim_latents | |
def null_optimization(self, latents, num_inner_steps, epsilon): # uncond_embeddings is what we what | |
uncond_embeddings, cond_embeddings = self.context.chunk(2) | |
uncond_embeddings_list = [] | |
latent_cur = latents[-1] | |
bar = tqdm(total=num_inner_steps * NUM_DDIM_STEPS) | |
for i in range(NUM_DDIM_STEPS): | |
uncond_embeddings = uncond_embeddings.clone().detach() | |
uncond_embeddings.requires_grad = True | |
optimizer = Adam([uncond_embeddings], lr=1e-2 * (1. - i / 100.)) | |
latent_prev = latents[len(latents) - i - 2] # GT | |
t = self.model.scheduler.timesteps[i] | |
with torch.no_grad(): | |
noise_pred_cond = self.get_noise_pred_single(latent_cur, t, cond_embeddings) | |
for j in range(num_inner_steps): | |
noise_pred_uncond = self.get_noise_pred_single(latent_cur, t, uncond_embeddings) | |
noise_pred = noise_pred_uncond + GUIDANCE_SCALE * (noise_pred_cond - noise_pred_uncond) | |
latents_prev_rec = self.prev_step(noise_pred, t, latent_cur) | |
loss = nnf.mse_loss(latents_prev_rec, latent_prev) | |
optimizer.zero_grad() | |
loss.backward() | |
optimizer.step() | |
loss_item = loss.item() | |
bar.update() | |
if loss_item < epsilon + i * 2e-5: | |
break | |
for j in range(j + 1, num_inner_steps): | |
bar.update() | |
uncond_embeddings_list.append(uncond_embeddings[:1].detach()) | |
with torch.no_grad(): | |
context = torch.cat([uncond_embeddings, cond_embeddings]) | |
latent_cur = self.get_noise_pred(latent_cur, t, False, context) | |
bar.close() | |
return uncond_embeddings_list | |
def invert(self, image_path: str, prompt: str, offsets=(0,0,0,0), num_inner_steps=10, early_stop_epsilon=1e-5, verbose=False): | |
self.init_prompt(prompt) | |
ptp_utils.register_attention_control(self.model, None) | |
image_gt = load_512_seq(image_path, *offsets) | |
if verbose: | |
print("DDIM inversion...") | |
image_rec, ddim_latents = self.ddim_inversion(image_gt) # ddim_latents is a list, like the link in Figure 3 | |
# image_rec refers to vq-autoencoder reconstruction | |
if verbose: | |
print("Null-text optimization...") | |
uncond_embeddings = self.null_optimization(ddim_latents, num_inner_steps, early_stop_epsilon) # ddim_latents serve as GT; easy to out of mem | |
return (image_gt, image_rec), ddim_latents[-1], uncond_embeddings | |
def invert_(self, image_path: str, prompt: str, offsets=(0,0,0,0), num_inner_steps=10, early_stop_epsilon=1e-5, verbose=False): | |
self.init_prompt(prompt) | |
ptp_utils.register_attention_control(self.model, None) | |
image_gt = load_512_seq(image_path, *offsets) | |
if verbose: | |
print("DDIM inversion...") | |
image_rec, ddim_latents = self.ddim_inversion(image_gt) # ddim_latents is a list, like the link in Figure 3 | |
# image_rec refers to vq-autoencoder reconstruction | |
if verbose: | |
print("Null-text optimization...") | |
return (image_gt, image_rec), ddim_latents[-1], None | |
def __init__(self, model): | |
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, | |
set_alpha_to_one=False) | |
self.model = model | |
self.tokenizer = self.model.tokenizer | |
self.model.scheduler.set_timesteps(NUM_DDIM_STEPS) | |
self.prompt = None | |
self.context = None | |
null_inversion = NullInversion(ldm_stable) | |
def text2image_ldm_stable( | |
model, | |
prompt: List[str], | |
controller, | |
num_inference_steps: int = 50, | |
guidance_scale: Optional[float] = 7.5, | |
generator: Optional[torch.Generator] = None, | |
latent: Optional[torch.FloatTensor] = None, | |
uncond_embeddings=None, | |
start_time=50, | |
return_type='image' | |
): | |
batch_size = len(prompt) | |
ptp_utils.register_attention_control(model, controller) | |
height = width = 512 | |
text_input = model.tokenizer( | |
prompt, | |
padding="max_length", | |
max_length=model.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0] | |
max_length = text_input.input_ids.shape[-1] | |
if uncond_embeddings is None: | |
uncond_input = model.tokenizer( | |
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt" | |
) | |
uncond_embeddings_ = model.text_encoder(uncond_input.input_ids.to(model.device))[0] | |
else: | |
uncond_embeddings_ = None | |
model.scheduler.set_timesteps(num_inference_steps) | |
for i, t in enumerate(tqdm(model.scheduler.timesteps[-start_time:])): | |
if uncond_embeddings_ is None: | |
context = torch.cat([uncond_embeddings[i].expand(*text_embeddings.shape), text_embeddings]) | |
else: | |
context = torch.cat([uncond_embeddings_, text_embeddings]) | |
latents = latent | |
latents = ptp_utils.diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource=False) | |
if return_type == 'image': | |
image = ptp_utils.latent2image_video(model.vae, latents) | |
else: | |
image = latents | |
return image, latent | |
############### | |
# Custom APIs: | |
ldm_stable.enable_xformers_memory_efficient_attention() | |
(image_gt, image_enc), x_t, uncond_embeddings = null_inversion.invert(image_path, prompt, offsets=(0,0,0,0), verbose=True) | |
##### load uncond ##### | |
# uncond_embeddings_load = np.load(uncond_embeddings_path) | |
# uncond_embeddings = [] | |
# for i in range(uncond_embeddings_load.shape[0]): | |
# uncond_embeddings.append(torch.from_numpy(uncond_embeddings_load[i]).to(device)) | |
####################### | |
##### save uncond ##### | |
# uncond_embeddings = torch.cat(uncond_embeddings) | |
# uncond_embeddings = uncond_embeddings.cpu().numpy() | |
####################### | |
print("Start Video-P2P!") | |
controller = make_controller(prompts, IRC, cross_replace_steps, self_replace_steps, blend_word, eq_params, mask_th=mask_th) | |
ptp_utils.register_attention_control(ldm_stable, controller) | |
generator = torch.Generator(device=device) | |
with torch.no_grad(): | |
sequence = ldm_stable( | |
prompts, | |
generator=generator, | |
latents=x_t, | |
uncond_embeddings_pre=uncond_embeddings, | |
controller = controller, | |
video_length=video_len, | |
simple=True, | |
).videos | |
sequence1 = rearrange(sequence[0], "c t h w -> t h w c") | |
sequence2 = rearrange(sequence[1], "c t h w -> t h w c") | |
inversion = [] | |
videop2p = [] | |
for i in range(sequence1.shape[0]): | |
inversion.append( Image.fromarray((sequence1[i] * 255).numpy().astype(np.uint8)) ) | |
videop2p.append( Image.fromarray((sequence2[i] * 255).numpy().astype(np.uint8)) ) | |
inversion[0].save(gif_name_1.replace('name', 'inversion'), save_all=True, append_images=inversion[1:], optimize=False, loop=0, duration=250) | |
videop2p[0].save(gif_name_2.replace('name', 'p2p'), save_all=True, append_images=videop2p[1:], optimize=False, loop=0, duration=250) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--config", type=str, default="./configs/videop2p.yaml") | |
args = parser.parse_args() | |
main(**OmegaConf.load(args.config)) | |