Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import datetime | |
import os | |
import pathlib | |
import shlex | |
import shutil | |
import subprocess | |
import sys | |
import gradio as gr | |
import slugify | |
import torch | |
import huggingface_hub | |
from huggingface_hub import HfApi | |
from omegaconf import OmegaConf | |
from app_upload import ModelUploader | |
from utils import save_model_card | |
sys.path.append('Tune-A-Video') | |
sys.path.append('Video-P2P') | |
URL_TO_JOIN_MODEL_LIBRARY_ORG = 'https://huggingface.co/organizations/video-p2p-library/share/pZwQaStCpdmMCGLURsMhMkEpvIlsdMdnkk' | |
ORIGINAL_SPACE_ID = 'video-p2p-library/Video-P2P-Demo' | |
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID) | |
class Trainer: | |
def __init__(self, hf_token: str | None = None): | |
self.hf_token = hf_token | |
self.model_uploader = ModelUploader(hf_token) | |
self.checkpoint_dir = pathlib.Path('checkpoints') | |
self.checkpoint_dir.mkdir(exist_ok=True) | |
def download_base_model(self, base_model_id: str, token=None) -> str: | |
model_dir = self.checkpoint_dir / base_model_id | |
if not model_dir.exists(): | |
org_name = base_model_id.split('/')[0] | |
org_dir = self.checkpoint_dir / org_name | |
org_dir.mkdir(exist_ok=True) | |
print(f'https://huggingface.co/{base_model_id}') | |
if token == None: | |
subprocess.run(shlex.split( | |
f'git clone https://huggingface.co/{base_model_id}'), | |
cwd=org_dir) | |
return model_dir.as_posix() | |
else: | |
temp_path = huggingface_hub.snapshot_download(base_model_id, use_auth_token=token) | |
print(temp_path, org_dir) | |
# subprocess.run(shlex.split(f'mv {temp_path} {model_dir.as_posix()}')) | |
# return model_dir.as_posix() | |
return temp_path | |
def join_model_library_org(self, token: str) -> None: | |
subprocess.run( | |
shlex.split( | |
f'curl -X POST -H "Authorization: Bearer {token}" -H "Content-Type: application/json" {URL_TO_JOIN_MODEL_LIBRARY_ORG}' | |
)) | |
def run( | |
self, | |
training_video: str, | |
training_prompt: str, | |
output_model_name: str, | |
overwrite_existing_model: bool, | |
validation_prompt: str, | |
base_model: str, | |
resolution_s: str, | |
n_steps: int, | |
learning_rate: float, | |
gradient_accumulation: int, | |
seed: int, | |
fp16: bool, | |
use_8bit_adam: bool, | |
checkpointing_steps: int, | |
validation_epochs: int, | |
upload_to_hub: bool, | |
use_private_repo: bool, | |
delete_existing_repo: bool, | |
upload_to: str, | |
remove_gpu_after_training: bool, | |
input_token: str, | |
blend_word_1: str, | |
blend_word_2: str, | |
eq_params_1: str, | |
eq_params_2: str, | |
) -> str: | |
# if SPACE_ID == ORIGINAL_SPACE_ID: | |
# raise gr.Error( | |
# 'This Space does not work on this Shared UI. Duplicate the Space and attribute a GPU' | |
# ) | |
if not torch.cuda.is_available(): | |
raise gr.Error('CUDA is not available.') | |
if training_video is None: | |
raise gr.Error('You need to upload a video.') | |
if not training_prompt: | |
raise gr.Error('The training prompt is missing.') | |
if not validation_prompt: | |
raise gr.Error('The validation prompt is missing.') | |
resolution = int(resolution_s) | |
if not output_model_name: | |
timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S') | |
output_model_name = f'video-p2p-{timestamp}' | |
output_model_name = slugify.slugify(output_model_name) | |
repo_dir = pathlib.Path(__file__).parent | |
output_dir = repo_dir / 'experiments' / output_model_name | |
if overwrite_existing_model or upload_to_hub: | |
shutil.rmtree(output_dir, ignore_errors=True) | |
output_dir.mkdir(parents=True) | |
if upload_to_hub: | |
self.join_model_library_org( | |
self.hf_token if self.hf_token else input_token) | |
config = OmegaConf.load('Video-P2P/configs/man-skiing.yaml') | |
config.pretrained_model_path = self.download_base_model(base_model) | |
config.output_dir = output_dir.as_posix() | |
config.train_data.video_path = training_video.name # type: ignore | |
config.train_data.prompt = training_prompt | |
config.train_data.n_sample_frames = 8 | |
config.train_data.width = resolution | |
config.train_data.height = resolution | |
config.train_data.sample_start_idx = 0 | |
config.train_data.sample_frame_rate = 1 | |
config.validation_data.prompts = [validation_prompt] | |
config.validation_data.video_length = 8 | |
config.validation_data.width = resolution | |
config.validation_data.height = resolution | |
config.validation_data.num_inference_steps = 50 | |
config.validation_data.guidance_scale = 7.5 | |
config.learning_rate = learning_rate | |
config.gradient_accumulation_steps = gradient_accumulation | |
config.train_batch_size = 1 | |
config.max_train_steps = n_steps | |
config.checkpointing_steps = checkpointing_steps | |
config.validation_steps = validation_epochs | |
config.seed = seed | |
config.mixed_precision = 'fp16' if fp16 else '' | |
config.use_8bit_adam = use_8bit_adam | |
config.prompts = [training_prompt, validation_prompt] | |
config.blend_word = [blend_word_1, blend_word_2] | |
config.eq_params = {"words":[eq_params_1], "values":[int(eq_params_2)]} | |
if len(validation_prompt) == len(training_prompt): | |
config.is_word_swap = True | |
else: | |
config.is_word_swap = False | |
config_path = output_dir / 'config.yaml' | |
with open(config_path, 'w') as f: | |
OmegaConf.save(config, f) | |
command = f'accelerate launch Video-P2P/run_tuning.py --config {config_path}' | |
subprocess.run(shlex.split(command)) | |
# command = f'python Video-P2P/run_videop2p.py --config {config_path}' | |
# subprocess.run(shlex.split(command)) | |
save_model_card(save_dir=output_dir, | |
base_model=base_model, | |
training_prompt=training_prompt, | |
test_prompt=validation_prompt, | |
test_image_dir='results') | |
message = 'Training completed!' | |
print(message) | |
if upload_to_hub: | |
upload_message = self.model_uploader.upload_model( | |
folder_path=output_dir.as_posix(), | |
repo_name=output_model_name, | |
upload_to=upload_to, | |
private=use_private_repo, | |
delete_existing_repo=delete_existing_repo, | |
input_token=input_token) | |
print(upload_message) | |
message = message + '\n' + upload_message | |
if remove_gpu_after_training: | |
space_id = os.getenv('SPACE_ID') | |
if space_id: | |
api = HfApi( | |
token=self.hf_token if self.hf_token else input_token) | |
api.request_space_hardware(repo_id=space_id, | |
hardware='cpu-basic') | |
return message | |
def run_p2p( | |
self, | |
training_video: str, | |
training_prompt: str, | |
output_model_name: str, | |
overwrite_existing_model: bool, | |
validation_prompt: str, | |
base_model: str, | |
resolution_s: str, | |
n_steps: int, | |
learning_rate: float, | |
gradient_accumulation: int, | |
seed: int, | |
fp16: bool, | |
use_8bit_adam: bool, | |
checkpointing_steps: int, | |
validation_epochs: int, | |
upload_to_hub: bool, | |
use_private_repo: bool, | |
delete_existing_repo: bool, | |
upload_to: str, | |
remove_gpu_after_training: bool, | |
input_token: str, | |
blend_word_1: str, | |
blend_word_2: str, | |
eq_params_1: str, | |
eq_params_2: str, | |
tuned_model: str, | |
cross_replace: float, | |
) -> str: | |
# if SPACE_ID == ORIGINAL_SPACE_ID: | |
# raise gr.Error( | |
# 'This Space does not work on this Shared UI. Duplicate the Space and attribute a GPU' | |
# ) | |
if not torch.cuda.is_available(): | |
raise gr.Error('CUDA is not available.') | |
if training_video is None: | |
raise gr.Error('You need to upload a video.') | |
if not training_prompt: | |
raise gr.Error('The training prompt is missing.') | |
if not validation_prompt: | |
raise gr.Error('The validation prompt is missing.') | |
resolution = int(resolution_s) | |
if not output_model_name: | |
timestamp = datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S') | |
output_model_name = f'video-p2p-{timestamp}' | |
output_model_name = slugify.slugify(output_model_name) | |
repo_dir = pathlib.Path(__file__).parent | |
output_dir = repo_dir / 'experiments' / output_model_name | |
if overwrite_existing_model or upload_to_hub: | |
shutil.rmtree(output_dir, ignore_errors=True) | |
output_dir.mkdir(parents=True) | |
if upload_to_hub: | |
self.join_model_library_org( | |
self.hf_token if self.hf_token else input_token) | |
config = OmegaConf.load('Video-P2P/configs/man-skiing.yaml') | |
config.pretrained_model_path = self.download_base_model(tuned_model, token=input_token) | |
config.output_dir = output_dir.as_posix() | |
config.train_data.video_path = training_video.name # type: ignore | |
config.train_data.prompt = training_prompt | |
config.train_data.n_sample_frames = 8 | |
config.train_data.width = resolution | |
config.train_data.height = resolution | |
config.train_data.sample_start_idx = 0 | |
config.train_data.sample_frame_rate = 1 | |
config.validation_data.prompts = [validation_prompt] | |
config.validation_data.video_length = 8 | |
config.validation_data.width = resolution | |
config.validation_data.height = resolution | |
config.validation_data.num_inference_steps = 50 | |
config.validation_data.guidance_scale = 7.5 | |
config.learning_rate = learning_rate | |
config.gradient_accumulation_steps = gradient_accumulation | |
config.train_batch_size = 1 | |
config.max_train_steps = n_steps | |
config.checkpointing_steps = checkpointing_steps | |
config.validation_steps = validation_epochs | |
config.seed = seed | |
config.mixed_precision = 'fp16' if fp16 else '' | |
config.use_8bit_adam = use_8bit_adam | |
config.prompts = [training_prompt, validation_prompt] | |
config.blend_word = [blend_word_1, blend_word_2] | |
config.eq_params = {"words":[eq_params_1], "values":[int(eq_params_2)]} | |
if len(validation_prompt) == len(training_prompt): | |
config.is_word_swap = True | |
else: | |
config.is_word_swap = False | |
config.cross_replace_steps = cross_replace | |
config_path = output_dir / 'config.yaml' | |
with open(config_path, 'w') as f: | |
OmegaConf.save(config, f) | |
# command = f'accelerate launch Video-P2P/run_tuning.py --config {config_path}' | |
# subprocess.run(shlex.split(command)) | |
command = f'python Video-P2P/run_videop2p.py --config {config_path}' | |
subprocess.run(shlex.split(command)) | |
save_model_card(save_dir=output_dir, | |
base_model=base_model, | |
training_prompt=training_prompt, | |
test_prompt=validation_prompt, | |
test_image_dir='results') | |
message = 'Training completed!' | |
print(message) | |
if upload_to_hub: | |
upload_message = self.model_uploader.upload_model( | |
folder_path=output_dir.as_posix(), | |
repo_name=output_model_name, | |
upload_to=upload_to, | |
private=use_private_repo, | |
delete_existing_repo=delete_existing_repo, | |
input_token=input_token) | |
print(upload_message) | |
message = message + '\n' + upload_message | |
if remove_gpu_after_training: | |
space_id = os.getenv('SPACE_ID') | |
if space_id: | |
api = HfApi( | |
token=self.hf_token if self.hf_token else input_token) | |
api.request_space_hardware(repo_id=space_id, | |
hardware='cpu-basic') | |
return message | |