Spaces:
Runtime error
Runtime error
ShaoTengLiu
commited on
Commit
•
edc0f20
1
Parent(s):
0fd0335
initial
Browse files- .DS_Store +0 -0
- README.md +17 -12
- configs/.DS_Store +0 -0
- configs/man-motor-tune.yaml +41 -0
- configs/rabbit-jump-p2p.yaml +16 -0
- configs/rabbit-jump-tune.yaml +41 -0
- data/.DS_Store +0 -0
- data/motorbike/.DS_Store +0 -0
- data/motorbike/1.jpg +0 -0
- data/motorbike/2.jpg +0 -0
- data/motorbike/3.jpg +0 -0
- data/motorbike/4.jpg +0 -0
- data/motorbike/5.jpg +0 -0
- data/motorbike/6.jpg +0 -0
- data/motorbike/7.jpg +0 -0
- data/motorbike/8.jpg +0 -0
- data/rabbit/1.jpg +0 -0
- data/rabbit/2.jpg +0 -0
- data/rabbit/3.jpg +0 -0
- data/rabbit/4.jpg +0 -0
- data/rabbit/5.jpg +0 -0
- data/rabbit/6.jpg +0 -0
- data/rabbit/7.jpg +0 -0
- data/rabbit/8.jpg +0 -0
- ptp_utils.py +309 -0
- requirements.txt +15 -0
- run_tuning.py +367 -0
- run_videop2p.py +707 -0
- script.sh +5 -0
- seq_aligner.py +196 -0
- tuneavideo/data/dataset.py +57 -0
- tuneavideo/models/attention.py +388 -0
- tuneavideo/models/resnet.py +209 -0
- tuneavideo/models/unet.py +450 -0
- tuneavideo/models/unet_blocks.py +588 -0
- tuneavideo/pipelines/pipeline_tuneavideo.py +449 -0
- tuneavideo/util.py +84 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
README.md
CHANGED
@@ -1,12 +1,17 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Video-P2P
|
2 |
+
|
3 |
+
## Setup
|
4 |
+
|
5 |
+
All required packages are listed in the requirements file.
|
6 |
+
The code was tested on a Tesla V100 32GB but should work on other cards with at least **16GB** VRAM.
|
7 |
+
|
8 |
+
## Quickstart
|
9 |
+
|
10 |
+
``` bash
|
11 |
+
bash script.sh
|
12 |
+
```
|
13 |
+
|
14 |
+
## References
|
15 |
+
* prompt-to-prompt: https://github.com/google/prompt-to-prompt
|
16 |
+
* Tune-A-Video: https://github.com/showlab/Tune-A-Video
|
17 |
+
* diffusers: https://github.com/huggingface/diffusers
|
configs/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
configs/man-motor-tune.yaml
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pretrained_model_path: "/data/stable-diffusion/stable-diffusion-v1-5"
|
2 |
+
output_dir: "./outputs/man-motor"
|
3 |
+
|
4 |
+
train_data:
|
5 |
+
video_path: "./data/motorbike"
|
6 |
+
prompt: "a man is driving a motorbike in the forest"
|
7 |
+
n_sample_frames: 8
|
8 |
+
width: 512
|
9 |
+
height: 512
|
10 |
+
sample_start_idx: 0
|
11 |
+
sample_frame_rate: 1
|
12 |
+
|
13 |
+
validation_data:
|
14 |
+
prompts:
|
15 |
+
- "a man is driving a motorbike in the forest"
|
16 |
+
- "a Spider-Man is driving a motorbike in the forest"
|
17 |
+
- "a Bat-Man is driving a motorbike in the forest"
|
18 |
+
- "an Iron-Man is driving a motorbike in the forest"
|
19 |
+
video_length: 8
|
20 |
+
width: 512
|
21 |
+
height: 512
|
22 |
+
num_inference_steps: 50
|
23 |
+
guidance_scale: 12.5
|
24 |
+
use_inv_latent: True
|
25 |
+
num_inv_steps: 50
|
26 |
+
|
27 |
+
learning_rate: 3e-5
|
28 |
+
train_batch_size: 1
|
29 |
+
max_train_steps: 500
|
30 |
+
checkpointing_steps: 1000
|
31 |
+
validation_steps: 100
|
32 |
+
trainable_modules:
|
33 |
+
- "attn1.to_q"
|
34 |
+
- "attn2.to_q"
|
35 |
+
- "attn_temp"
|
36 |
+
|
37 |
+
seed: 33
|
38 |
+
mixed_precision: fp16
|
39 |
+
use_8bit_adam: False
|
40 |
+
gradient_checkpointing: True
|
41 |
+
enable_xformers_memory_efficient_attention: True
|
configs/rabbit-jump-p2p.yaml
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pretrained_model_path: "./outputs/rabbit-jump"
|
2 |
+
image_path: "./data/rabbit"
|
3 |
+
prompt: "a rabbit is jumping on the grass"
|
4 |
+
prompts:
|
5 |
+
- "a rabbit is jumping on the grass"
|
6 |
+
- "a origami rabbit is jumping on the grass"
|
7 |
+
blend_word:
|
8 |
+
- 'rabbit'
|
9 |
+
- 'rabbit'
|
10 |
+
eq_params:
|
11 |
+
words: "origami"
|
12 |
+
values: 2
|
13 |
+
gif_folder: "./outputs/rabbit-jump/results"
|
14 |
+
gif_name_1: "./outputs/rabbit-jump/results/original_name.gif"
|
15 |
+
gif_name_2: "./outputs/rabbit-jump/results/origami_name.gif"
|
16 |
+
IRC: False
|
configs/rabbit-jump-tune.yaml
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pretrained_model_path: "/data/stable-diffusion/stable-diffusion-v1-5"
|
2 |
+
output_dir: "./outputs/rabbit-jump"
|
3 |
+
|
4 |
+
train_data:
|
5 |
+
video_path: "./data/rabbit"
|
6 |
+
prompt: "a rabbit is jumping on the grass"
|
7 |
+
n_sample_frames: 8
|
8 |
+
width: 512
|
9 |
+
height: 512
|
10 |
+
sample_start_idx: 0
|
11 |
+
sample_frame_rate: 1
|
12 |
+
|
13 |
+
validation_data:
|
14 |
+
prompts:
|
15 |
+
- "a rabbit is jumping on the grass"
|
16 |
+
- "a Lego rabbit is jumping on the grass"
|
17 |
+
- "a origami rabbit is jumping on the grass"
|
18 |
+
- "a crochet rabbit is jumping on the grass"
|
19 |
+
video_length: 8
|
20 |
+
width: 512
|
21 |
+
height: 512
|
22 |
+
num_inference_steps: 50
|
23 |
+
guidance_scale: 12.5
|
24 |
+
use_inv_latent: True
|
25 |
+
num_inv_steps: 50
|
26 |
+
|
27 |
+
learning_rate: 3e-5
|
28 |
+
train_batch_size: 1
|
29 |
+
max_train_steps: 500
|
30 |
+
checkpointing_steps: 1000
|
31 |
+
validation_steps: 100
|
32 |
+
trainable_modules:
|
33 |
+
- "attn1.to_q"
|
34 |
+
- "attn2.to_q"
|
35 |
+
- "attn_temp"
|
36 |
+
|
37 |
+
seed: 33
|
38 |
+
mixed_precision: fp16
|
39 |
+
use_8bit_adam: False
|
40 |
+
gradient_checkpointing: True
|
41 |
+
enable_xformers_memory_efficient_attention: True
|
data/.DS_Store
ADDED
Binary file (10.2 kB). View file
|
|
data/motorbike/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
data/motorbike/1.jpg
ADDED
data/motorbike/2.jpg
ADDED
data/motorbike/3.jpg
ADDED
data/motorbike/4.jpg
ADDED
data/motorbike/5.jpg
ADDED
data/motorbike/6.jpg
ADDED
data/motorbike/7.jpg
ADDED
data/motorbike/8.jpg
ADDED
data/rabbit/1.jpg
ADDED
data/rabbit/2.jpg
ADDED
data/rabbit/3.jpg
ADDED
data/rabbit/4.jpg
ADDED
data/rabbit/5.jpg
ADDED
data/rabbit/6.jpg
ADDED
data/rabbit/7.jpg
ADDED
data/rabbit/8.jpg
ADDED
ptp_utils.py
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Google LLC
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import numpy as np
|
16 |
+
import torch
|
17 |
+
from PIL import Image, ImageDraw, ImageFont
|
18 |
+
import cv2
|
19 |
+
from typing import Optional, Union, Tuple, List, Callable, Dict
|
20 |
+
from IPython.display import display
|
21 |
+
from tqdm.notebook import tqdm
|
22 |
+
|
23 |
+
|
24 |
+
def text_under_image(image: np.ndarray, text: str, text_color: Tuple[int, int, int] = (0, 0, 0)):
|
25 |
+
h, w, c = image.shape
|
26 |
+
offset = int(h * .2)
|
27 |
+
img = np.ones((h + offset, w, c), dtype=np.uint8) * 255
|
28 |
+
font = cv2.FONT_HERSHEY_SIMPLEX
|
29 |
+
img[:h] = image
|
30 |
+
textsize = cv2.getTextSize(text, font, 1, 2)[0]
|
31 |
+
text_x, text_y = (w - textsize[0]) // 2, h + offset - textsize[1] // 2
|
32 |
+
cv2.putText(img, text, (text_x, text_y ), font, 1, text_color, 2)
|
33 |
+
return img
|
34 |
+
|
35 |
+
|
36 |
+
def view_images(images, num_rows=1, offset_ratio=0.02):
|
37 |
+
if type(images) is list:
|
38 |
+
num_empty = len(images) % num_rows
|
39 |
+
elif images.ndim == 4:
|
40 |
+
num_empty = images.shape[0] % num_rows
|
41 |
+
else:
|
42 |
+
images = [images]
|
43 |
+
num_empty = 0
|
44 |
+
|
45 |
+
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
|
46 |
+
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
|
47 |
+
num_items = len(images)
|
48 |
+
|
49 |
+
h, w, c = images[0].shape
|
50 |
+
offset = int(h * offset_ratio)
|
51 |
+
num_cols = num_items // num_rows
|
52 |
+
image_ = np.ones((h * num_rows + offset * (num_rows - 1),
|
53 |
+
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
|
54 |
+
for i in range(num_rows):
|
55 |
+
for j in range(num_cols):
|
56 |
+
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
|
57 |
+
i * num_cols + j]
|
58 |
+
|
59 |
+
pil_img = Image.fromarray(image_)
|
60 |
+
display(pil_img)
|
61 |
+
|
62 |
+
|
63 |
+
def diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource=False, simple=False):
|
64 |
+
if low_resource:
|
65 |
+
noise_pred_uncond = model.unet(latents, t, encoder_hidden_states=context[0])["sample"]
|
66 |
+
noise_prediction_text = model.unet(latents, t, encoder_hidden_states=context[1])["sample"]
|
67 |
+
else:
|
68 |
+
latents_input = torch.cat([latents] * 2)
|
69 |
+
noise_pred = model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
|
70 |
+
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
|
71 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
|
72 |
+
if simple:
|
73 |
+
noise_pred[0] = noise_prediction_text[0]
|
74 |
+
latents = model.scheduler.step(noise_pred, t, latents)["prev_sample"]
|
75 |
+
# first latents: torch.Size([1, 4, 4, 64, 64])
|
76 |
+
latents = controller.step_callback(latents)
|
77 |
+
return latents
|
78 |
+
|
79 |
+
|
80 |
+
def latent2image(vae, latents):
|
81 |
+
latents = 1 / 0.18215 * latents
|
82 |
+
image = vae.decode(latents)['sample']
|
83 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
84 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
85 |
+
image = (image * 255).astype(np.uint8)
|
86 |
+
return image
|
87 |
+
|
88 |
+
|
89 |
+
@torch.no_grad()
|
90 |
+
def latent2image_video(vae, latents):
|
91 |
+
latents = 1 / 0.18215 * latents
|
92 |
+
latents = latents[0].permute(1, 0, 2, 3)
|
93 |
+
image = vae.decode(latents)['sample']
|
94 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
95 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
96 |
+
image = (image * 255).astype(np.uint8)
|
97 |
+
return image
|
98 |
+
|
99 |
+
|
100 |
+
def init_latent(latent, model, height, width, generator, batch_size):
|
101 |
+
if latent is None:
|
102 |
+
latent = torch.randn(
|
103 |
+
(1, model.unet.in_channels, height // 8, width // 8),
|
104 |
+
generator=generator,
|
105 |
+
)
|
106 |
+
latents = latent.expand(batch_size, model.unet.in_channels, height // 8, width // 8).to(model.device)
|
107 |
+
return latent, latents
|
108 |
+
|
109 |
+
|
110 |
+
@torch.no_grad()
|
111 |
+
def text2image_ldm(
|
112 |
+
model,
|
113 |
+
prompt: List[str],
|
114 |
+
controller,
|
115 |
+
num_inference_steps: int = 50,
|
116 |
+
guidance_scale: Optional[float] = 7.,
|
117 |
+
generator: Optional[torch.Generator] = None,
|
118 |
+
latent: Optional[torch.FloatTensor] = None,
|
119 |
+
):
|
120 |
+
register_attention_control(model, controller)
|
121 |
+
height = width = 256
|
122 |
+
batch_size = len(prompt)
|
123 |
+
|
124 |
+
uncond_input = model.tokenizer([""] * batch_size, padding="max_length", max_length=77, return_tensors="pt")
|
125 |
+
uncond_embeddings = model.bert(uncond_input.input_ids.to(model.device))[0]
|
126 |
+
|
127 |
+
text_input = model.tokenizer(prompt, padding="max_length", max_length=77, return_tensors="pt")
|
128 |
+
text_embeddings = model.bert(text_input.input_ids.to(model.device))[0]
|
129 |
+
latent, latents = init_latent(latent, model, height, width, generator, batch_size)
|
130 |
+
context = torch.cat([uncond_embeddings, text_embeddings])
|
131 |
+
|
132 |
+
model.scheduler.set_timesteps(num_inference_steps)
|
133 |
+
for t in tqdm(model.scheduler.timesteps):
|
134 |
+
latents = diffusion_step(model, controller, latents, context, t, guidance_scale)
|
135 |
+
|
136 |
+
image = latent2image(model.vqvae, latents)
|
137 |
+
|
138 |
+
return image, latent
|
139 |
+
|
140 |
+
|
141 |
+
@torch.no_grad()
|
142 |
+
def text2image_ldm_stable(
|
143 |
+
model,
|
144 |
+
prompt: List[str],
|
145 |
+
controller,
|
146 |
+
num_inference_steps: int = 50,
|
147 |
+
guidance_scale: float = 7.5,
|
148 |
+
generator: Optional[torch.Generator] = None,
|
149 |
+
latent: Optional[torch.FloatTensor] = None,
|
150 |
+
low_resource: bool = False,
|
151 |
+
):
|
152 |
+
register_attention_control(model, controller)
|
153 |
+
height = width = 512
|
154 |
+
batch_size = len(prompt)
|
155 |
+
|
156 |
+
text_input = model.tokenizer(
|
157 |
+
prompt,
|
158 |
+
padding="max_length",
|
159 |
+
max_length=model.tokenizer.model_max_length,
|
160 |
+
truncation=True,
|
161 |
+
return_tensors="pt",
|
162 |
+
)
|
163 |
+
text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
|
164 |
+
max_length = text_input.input_ids.shape[-1]
|
165 |
+
uncond_input = model.tokenizer(
|
166 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
167 |
+
)
|
168 |
+
uncond_embeddings = model.text_encoder(uncond_input.input_ids.to(model.device))[0]
|
169 |
+
|
170 |
+
context = [uncond_embeddings, text_embeddings]
|
171 |
+
if not low_resource:
|
172 |
+
context = torch.cat(context)
|
173 |
+
|
174 |
+
latent, latents = init_latent(latent, model, height, width, generator, batch_size)
|
175 |
+
|
176 |
+
# set timesteps
|
177 |
+
extra_set_kwargs = {"offset": 1}
|
178 |
+
model.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
179 |
+
for t in tqdm(model.scheduler.timesteps):
|
180 |
+
latents = diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource)
|
181 |
+
|
182 |
+
image = latent2image(model.vae, latents)
|
183 |
+
|
184 |
+
return image, latent
|
185 |
+
|
186 |
+
|
187 |
+
def register_attention_control(model, controller):
|
188 |
+
def ca_forward(self, place_in_unet):
|
189 |
+
to_out = self.to_out
|
190 |
+
if type(to_out) is torch.nn.modules.container.ModuleList:
|
191 |
+
to_out = self.to_out[0]
|
192 |
+
else:
|
193 |
+
to_out = self.to_out
|
194 |
+
|
195 |
+
def forward(x, encoder_hidden_states=None, attention_mask=None):
|
196 |
+
context = encoder_hidden_states
|
197 |
+
mask = attention_mask
|
198 |
+
batch_size, sequence_length, dim = x.shape
|
199 |
+
h = self.heads
|
200 |
+
q = self.to_q(x)
|
201 |
+
is_cross = context is not None
|
202 |
+
context = context if is_cross else x
|
203 |
+
k = self.to_k(context)
|
204 |
+
v = self.to_v(context)
|
205 |
+
q = self.reshape_heads_to_batch_dim(q)
|
206 |
+
k = self.reshape_heads_to_batch_dim(k)
|
207 |
+
v = self.reshape_heads_to_batch_dim(v)
|
208 |
+
sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale # q: torch.Size([128, 4096, 40]); k: torch.Size([64, 77, 40])
|
209 |
+
|
210 |
+
if mask is not None:
|
211 |
+
mask = mask.reshape(batch_size, -1)
|
212 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
213 |
+
mask = mask[:, None, :].repeat(h, 1, 1)
|
214 |
+
sim.masked_fill_(~mask, max_neg_value)
|
215 |
+
|
216 |
+
attn = torch.exp(sim-torch.max(sim)) / torch.sum(torch.exp(sim-torch.max(sim)), axis=-1).unsqueeze(-1)
|
217 |
+
attn = controller(attn, is_cross, place_in_unet)
|
218 |
+
out = torch.einsum("b i j, b j d -> b i d", attn, v)
|
219 |
+
out = self.reshape_batch_dim_to_heads(out)
|
220 |
+
return to_out(out)
|
221 |
+
|
222 |
+
return forward
|
223 |
+
|
224 |
+
class DummyController:
|
225 |
+
|
226 |
+
def __call__(self, *args):
|
227 |
+
return args[0]
|
228 |
+
|
229 |
+
def __init__(self):
|
230 |
+
self.num_att_layers = 0
|
231 |
+
|
232 |
+
if controller is None:
|
233 |
+
controller = DummyController()
|
234 |
+
|
235 |
+
def register_recr(net_, count, place_in_unet):
|
236 |
+
if net_.__class__.__name__ == 'CrossAttention':
|
237 |
+
net_.forward = ca_forward(net_, place_in_unet)
|
238 |
+
return count + 1
|
239 |
+
elif hasattr(net_, 'children'):
|
240 |
+
for net__ in net_.children():
|
241 |
+
count = register_recr(net__, count, place_in_unet)
|
242 |
+
return count
|
243 |
+
|
244 |
+
cross_att_count = 0
|
245 |
+
sub_nets = model.unet.named_children()
|
246 |
+
for net in sub_nets:
|
247 |
+
if "down" in net[0]:
|
248 |
+
cross_att_count += register_recr(net[1], 0, "down")
|
249 |
+
elif "up" in net[0]:
|
250 |
+
cross_att_count += register_recr(net[1], 0, "up")
|
251 |
+
elif "mid" in net[0]:
|
252 |
+
cross_att_count += register_recr(net[1], 0, "mid")
|
253 |
+
|
254 |
+
controller.num_att_layers = cross_att_count
|
255 |
+
|
256 |
+
|
257 |
+
def get_word_inds(text: str, word_place: int, tokenizer):
|
258 |
+
split_text = text.split(" ")
|
259 |
+
if type(word_place) is str:
|
260 |
+
word_place = [i for i, word in enumerate(split_text) if word_place == word]
|
261 |
+
elif type(word_place) is int:
|
262 |
+
word_place = [word_place]
|
263 |
+
out = []
|
264 |
+
if len(word_place) > 0:
|
265 |
+
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
|
266 |
+
cur_len, ptr = 0, 0
|
267 |
+
|
268 |
+
for i in range(len(words_encode)):
|
269 |
+
cur_len += len(words_encode[i])
|
270 |
+
if ptr in word_place:
|
271 |
+
out.append(i + 1)
|
272 |
+
if cur_len >= len(split_text[ptr]):
|
273 |
+
ptr += 1
|
274 |
+
cur_len = 0
|
275 |
+
return np.array(out)
|
276 |
+
|
277 |
+
|
278 |
+
def update_alpha_time_word(alpha, bounds: Union[float, Tuple[float, float]], prompt_ind: int,
|
279 |
+
word_inds: Optional[torch.Tensor]=None):
|
280 |
+
if type(bounds) is float:
|
281 |
+
bounds = 0, bounds
|
282 |
+
start, end = int(bounds[0] * alpha.shape[0]), int(bounds[1] * alpha.shape[0])
|
283 |
+
if word_inds is None:
|
284 |
+
word_inds = torch.arange(alpha.shape[2])
|
285 |
+
alpha[: start, prompt_ind, word_inds] = 0
|
286 |
+
alpha[start: end, prompt_ind, word_inds] = 1
|
287 |
+
alpha[end:, prompt_ind, word_inds] = 0
|
288 |
+
return alpha
|
289 |
+
|
290 |
+
|
291 |
+
def get_time_words_attention_alpha(prompts, num_steps,
|
292 |
+
cross_replace_steps: Union[float, Dict[str, Tuple[float, float]]],
|
293 |
+
tokenizer, max_num_words=77):
|
294 |
+
if type(cross_replace_steps) is not dict:
|
295 |
+
cross_replace_steps = {"default_": cross_replace_steps}
|
296 |
+
if "default_" not in cross_replace_steps:
|
297 |
+
cross_replace_steps["default_"] = (0., 1.)
|
298 |
+
alpha_time_words = torch.zeros(num_steps + 1, len(prompts) - 1, max_num_words)
|
299 |
+
for i in range(len(prompts) - 1): # 2
|
300 |
+
alpha_time_words = update_alpha_time_word(alpha_time_words, cross_replace_steps["default_"], # {'default_': 0.8}
|
301 |
+
i)
|
302 |
+
for key, item in cross_replace_steps.items():
|
303 |
+
if key != "default_":
|
304 |
+
inds = [get_word_inds(prompts[i], key, tokenizer) for i in range(1, len(prompts))]
|
305 |
+
for i, ind in enumerate(inds):
|
306 |
+
if len(ind) > 0:
|
307 |
+
alpha_time_words = update_alpha_time_word(alpha_time_words, item, i, ind)
|
308 |
+
alpha_time_words = alpha_time_words.reshape(num_steps + 1, len(prompts) - 1, 1, 1, max_num_words)
|
309 |
+
return alpha_time_words
|
requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.12.1
|
2 |
+
torchvision==0.13.1
|
3 |
+
diffusers[torch]==0.11.1
|
4 |
+
transformers>=4.25.1
|
5 |
+
bitsandbytes==0.35.4
|
6 |
+
decord==0.6.0
|
7 |
+
accelerate
|
8 |
+
tensorboard
|
9 |
+
modelcards
|
10 |
+
omegaconf
|
11 |
+
einops
|
12 |
+
imageio
|
13 |
+
ftfy
|
14 |
+
opencv-python
|
15 |
+
ipywidgets
|
run_tuning.py
ADDED
@@ -0,0 +1,367 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import datetime
|
3 |
+
import logging
|
4 |
+
import inspect
|
5 |
+
import math
|
6 |
+
import os
|
7 |
+
from typing import Dict, Optional, Tuple
|
8 |
+
from omegaconf import OmegaConf
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
import torch.utils.checkpoint
|
13 |
+
|
14 |
+
import diffusers
|
15 |
+
import transformers
|
16 |
+
from accelerate import Accelerator
|
17 |
+
from accelerate.logging import get_logger
|
18 |
+
from accelerate.utils import set_seed
|
19 |
+
from diffusers import AutoencoderKL, DDPMScheduler, DDIMScheduler
|
20 |
+
from diffusers.optimization import get_scheduler
|
21 |
+
from diffusers.utils import check_min_version
|
22 |
+
from diffusers.utils.import_utils import is_xformers_available
|
23 |
+
from tqdm.auto import tqdm
|
24 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
25 |
+
|
26 |
+
from tuneavideo.models.unet import UNet3DConditionModel
|
27 |
+
from tuneavideo.data.dataset import TuneAVideoDataset
|
28 |
+
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
|
29 |
+
from tuneavideo.util import save_videos_grid, ddim_inversion
|
30 |
+
from einops import rearrange
|
31 |
+
|
32 |
+
|
33 |
+
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
34 |
+
check_min_version("0.10.0.dev0")
|
35 |
+
|
36 |
+
logger = get_logger(__name__, log_level="INFO")
|
37 |
+
|
38 |
+
|
39 |
+
def main(
|
40 |
+
pretrained_model_path: str,
|
41 |
+
output_dir: str,
|
42 |
+
train_data: Dict,
|
43 |
+
validation_data: Dict,
|
44 |
+
validation_steps: int = 100,
|
45 |
+
trainable_modules: Tuple[str] = (
|
46 |
+
"attn1.to_q",
|
47 |
+
"attn2.to_q",
|
48 |
+
"attn_temp",
|
49 |
+
),
|
50 |
+
train_batch_size: int = 1,
|
51 |
+
max_train_steps: int = 500,
|
52 |
+
learning_rate: float = 3e-5,
|
53 |
+
scale_lr: bool = False,
|
54 |
+
lr_scheduler: str = "constant",
|
55 |
+
lr_warmup_steps: int = 0,
|
56 |
+
adam_beta1: float = 0.9,
|
57 |
+
adam_beta2: float = 0.999,
|
58 |
+
adam_weight_decay: float = 1e-2,
|
59 |
+
adam_epsilon: float = 1e-08,
|
60 |
+
max_grad_norm: float = 1.0,
|
61 |
+
gradient_accumulation_steps: int = 1,
|
62 |
+
gradient_checkpointing: bool = True,
|
63 |
+
checkpointing_steps: int = 500,
|
64 |
+
resume_from_checkpoint: Optional[str] = None,
|
65 |
+
mixed_precision: Optional[str] = "fp16",
|
66 |
+
use_8bit_adam: bool = False,
|
67 |
+
enable_xformers_memory_efficient_attention: bool = True,
|
68 |
+
seed: Optional[int] = None,
|
69 |
+
):
|
70 |
+
*_, config = inspect.getargvalues(inspect.currentframe())
|
71 |
+
|
72 |
+
accelerator = Accelerator(
|
73 |
+
gradient_accumulation_steps=gradient_accumulation_steps,
|
74 |
+
mixed_precision=mixed_precision,
|
75 |
+
)
|
76 |
+
|
77 |
+
# Make one log on every process with the configuration for debugging.
|
78 |
+
logging.basicConfig(
|
79 |
+
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
80 |
+
datefmt="%m/%d/%Y %H:%M:%S",
|
81 |
+
level=logging.INFO,
|
82 |
+
)
|
83 |
+
logger.info(accelerator.state, main_process_only=False)
|
84 |
+
if accelerator.is_local_main_process:
|
85 |
+
transformers.utils.logging.set_verbosity_warning()
|
86 |
+
diffusers.utils.logging.set_verbosity_info()
|
87 |
+
else:
|
88 |
+
transformers.utils.logging.set_verbosity_error()
|
89 |
+
diffusers.utils.logging.set_verbosity_error()
|
90 |
+
|
91 |
+
# If passed along, set the training seed now.
|
92 |
+
if seed is not None:
|
93 |
+
set_seed(seed)
|
94 |
+
|
95 |
+
# Handle the output folder creation
|
96 |
+
if accelerator.is_main_process:
|
97 |
+
# now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
|
98 |
+
# output_dir = os.path.join(output_dir, now)
|
99 |
+
os.makedirs(output_dir, exist_ok=True)
|
100 |
+
os.makedirs(f"{output_dir}/samples", exist_ok=True)
|
101 |
+
os.makedirs(f"{output_dir}/inv_latents", exist_ok=True)
|
102 |
+
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
|
103 |
+
|
104 |
+
# Load scheduler, tokenizer and models.
|
105 |
+
noise_scheduler = DDPMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
|
106 |
+
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
|
107 |
+
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
|
108 |
+
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
|
109 |
+
unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet")
|
110 |
+
|
111 |
+
# Freeze vae and text_encoder
|
112 |
+
vae.requires_grad_(False)
|
113 |
+
text_encoder.requires_grad_(False)
|
114 |
+
|
115 |
+
unet.requires_grad_(False)
|
116 |
+
for name, module in unet.named_modules():
|
117 |
+
if name.endswith(tuple(trainable_modules)):
|
118 |
+
for params in module.parameters():
|
119 |
+
params.requires_grad = True
|
120 |
+
|
121 |
+
if enable_xformers_memory_efficient_attention:
|
122 |
+
if is_xformers_available():
|
123 |
+
unet.enable_xformers_memory_efficient_attention()
|
124 |
+
else:
|
125 |
+
raise ValueError("xformers is not available. Make sure it is installed correctly")
|
126 |
+
|
127 |
+
if gradient_checkpointing:
|
128 |
+
unet.enable_gradient_checkpointing()
|
129 |
+
|
130 |
+
if scale_lr:
|
131 |
+
learning_rate = (
|
132 |
+
learning_rate * gradient_accumulation_steps * train_batch_size * accelerator.num_processes
|
133 |
+
)
|
134 |
+
|
135 |
+
# Initialize the optimizer
|
136 |
+
if use_8bit_adam:
|
137 |
+
try:
|
138 |
+
import bitsandbytes as bnb
|
139 |
+
except ImportError:
|
140 |
+
raise ImportError(
|
141 |
+
"Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`"
|
142 |
+
)
|
143 |
+
|
144 |
+
optimizer_cls = bnb.optim.AdamW8bit
|
145 |
+
else:
|
146 |
+
optimizer_cls = torch.optim.AdamW
|
147 |
+
|
148 |
+
optimizer = optimizer_cls(
|
149 |
+
unet.parameters(),
|
150 |
+
lr=learning_rate,
|
151 |
+
betas=(adam_beta1, adam_beta2),
|
152 |
+
weight_decay=adam_weight_decay,
|
153 |
+
eps=adam_epsilon,
|
154 |
+
)
|
155 |
+
|
156 |
+
# Get the training dataset
|
157 |
+
train_dataset = TuneAVideoDataset(**train_data)
|
158 |
+
|
159 |
+
# Preprocessing the dataset
|
160 |
+
train_dataset.prompt_ids = tokenizer(
|
161 |
+
train_dataset.prompt, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
|
162 |
+
).input_ids[0]
|
163 |
+
|
164 |
+
# DataLoaders creation:
|
165 |
+
train_dataloader = torch.utils.data.DataLoader(
|
166 |
+
train_dataset, batch_size=train_batch_size
|
167 |
+
)
|
168 |
+
|
169 |
+
# Get the validation pipeline
|
170 |
+
validation_pipeline = TuneAVideoPipeline(
|
171 |
+
vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
|
172 |
+
scheduler=DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
|
173 |
+
)
|
174 |
+
validation_pipeline.enable_vae_slicing()
|
175 |
+
ddim_inv_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder='scheduler')
|
176 |
+
ddim_inv_scheduler.set_timesteps(validation_data.num_inv_steps)
|
177 |
+
|
178 |
+
# Scheduler
|
179 |
+
lr_scheduler = get_scheduler(
|
180 |
+
lr_scheduler,
|
181 |
+
optimizer=optimizer,
|
182 |
+
num_warmup_steps=lr_warmup_steps * gradient_accumulation_steps,
|
183 |
+
num_training_steps=max_train_steps * gradient_accumulation_steps,
|
184 |
+
)
|
185 |
+
|
186 |
+
# Prepare everything with our `accelerator`.
|
187 |
+
unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
188 |
+
unet, optimizer, train_dataloader, lr_scheduler
|
189 |
+
)
|
190 |
+
|
191 |
+
# For mixed precision training we cast the text_encoder and vae weights to half-precision
|
192 |
+
# as these models are only used for inference, keeping weights in full precision is not required.
|
193 |
+
weight_dtype = torch.float32
|
194 |
+
if accelerator.mixed_precision == "fp16":
|
195 |
+
weight_dtype = torch.float16
|
196 |
+
elif accelerator.mixed_precision == "bf16":
|
197 |
+
weight_dtype = torch.bfloat16
|
198 |
+
|
199 |
+
# Move text_encode and vae to gpu and cast to weight_dtype
|
200 |
+
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
201 |
+
vae.to(accelerator.device, dtype=weight_dtype)
|
202 |
+
|
203 |
+
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
204 |
+
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / gradient_accumulation_steps)
|
205 |
+
# Afterwards we recalculate our number of training epochs
|
206 |
+
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
|
207 |
+
|
208 |
+
# We need to initialize the trackers we use, and also store our configuration.
|
209 |
+
# The trackers initializes automatically on the main process.
|
210 |
+
if accelerator.is_main_process:
|
211 |
+
accelerator.init_trackers("text2video-fine-tune")
|
212 |
+
|
213 |
+
# Train!
|
214 |
+
total_batch_size = train_batch_size * accelerator.num_processes * gradient_accumulation_steps
|
215 |
+
|
216 |
+
logger.info("***** Running training *****")
|
217 |
+
logger.info(f" Num examples = {len(train_dataset)}")
|
218 |
+
logger.info(f" Num Epochs = {num_train_epochs}")
|
219 |
+
logger.info(f" Instantaneous batch size per device = {train_batch_size}")
|
220 |
+
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
221 |
+
logger.info(f" Gradient Accumulation steps = {gradient_accumulation_steps}")
|
222 |
+
logger.info(f" Total optimization steps = {max_train_steps}")
|
223 |
+
global_step = 0
|
224 |
+
first_epoch = 0
|
225 |
+
|
226 |
+
# Potentially load in the weights and states from a previous save
|
227 |
+
if resume_from_checkpoint:
|
228 |
+
if resume_from_checkpoint != "latest":
|
229 |
+
path = os.path.basename(resume_from_checkpoint)
|
230 |
+
else:
|
231 |
+
# Get the most recent checkpoint
|
232 |
+
dirs = os.listdir(output_dir)
|
233 |
+
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
234 |
+
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
235 |
+
path = dirs[-1]
|
236 |
+
accelerator.print(f"Resuming from checkpoint {path}")
|
237 |
+
accelerator.load_state(os.path.join(output_dir, path))
|
238 |
+
global_step = int(path.split("-")[1])
|
239 |
+
|
240 |
+
first_epoch = global_step // num_update_steps_per_epoch
|
241 |
+
resume_step = global_step % num_update_steps_per_epoch
|
242 |
+
|
243 |
+
# Only show the progress bar once on each machine.
|
244 |
+
progress_bar = tqdm(range(global_step, max_train_steps), disable=not accelerator.is_local_main_process)
|
245 |
+
progress_bar.set_description("Steps")
|
246 |
+
|
247 |
+
for epoch in range(first_epoch, num_train_epochs):
|
248 |
+
unet.train()
|
249 |
+
train_loss = 0.0
|
250 |
+
for step, batch in enumerate(train_dataloader):
|
251 |
+
# Skip steps until we reach the resumed step
|
252 |
+
if resume_from_checkpoint and epoch == first_epoch and step < resume_step:
|
253 |
+
if step % gradient_accumulation_steps == 0:
|
254 |
+
progress_bar.update(1)
|
255 |
+
continue
|
256 |
+
|
257 |
+
with accelerator.accumulate(unet):
|
258 |
+
# Convert videos to latent space
|
259 |
+
pixel_values = batch["pixel_values"].to(weight_dtype)
|
260 |
+
video_length = pixel_values.shape[1]
|
261 |
+
pixel_values = rearrange(pixel_values, "b f c h w -> (b f) c h w")
|
262 |
+
latents = vae.encode(pixel_values).latent_dist.sample()
|
263 |
+
latents = rearrange(latents, "(b f) c h w -> b c f h w", f=video_length)
|
264 |
+
latents = latents * 0.18215
|
265 |
+
|
266 |
+
# Sample noise that we'll add to the latents
|
267 |
+
noise = torch.randn_like(latents)
|
268 |
+
bsz = latents.shape[0]
|
269 |
+
# Sample a random timestep for each video
|
270 |
+
timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device)
|
271 |
+
timesteps = timesteps.long()
|
272 |
+
|
273 |
+
# Add noise to the latents according to the noise magnitude at each timestep
|
274 |
+
# (this is the forward diffusion process)
|
275 |
+
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
276 |
+
|
277 |
+
# Get the text embedding for conditioning
|
278 |
+
encoder_hidden_states = text_encoder(batch["prompt_ids"])[0]
|
279 |
+
|
280 |
+
# Get the target for loss depending on the prediction type
|
281 |
+
if noise_scheduler.prediction_type == "epsilon":
|
282 |
+
target = noise
|
283 |
+
elif noise_scheduler.prediction_type == "v_prediction":
|
284 |
+
target = noise_scheduler.get_velocity(latents, noise, timesteps)
|
285 |
+
else:
|
286 |
+
raise ValueError(f"Unknown prediction type {noise_scheduler.prediction_type}")
|
287 |
+
|
288 |
+
# Predict the noise residual and compute loss
|
289 |
+
model_pred = unet(noisy_latents, timesteps, encoder_hidden_states).sample
|
290 |
+
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
|
291 |
+
|
292 |
+
# Gather the losses across all processes for logging (if we use distributed training).
|
293 |
+
avg_loss = accelerator.gather(loss.repeat(train_batch_size)).mean()
|
294 |
+
train_loss += avg_loss.item() / gradient_accumulation_steps
|
295 |
+
|
296 |
+
# Backpropagate
|
297 |
+
accelerator.backward(loss)
|
298 |
+
if accelerator.sync_gradients:
|
299 |
+
accelerator.clip_grad_norm_(unet.parameters(), max_grad_norm)
|
300 |
+
optimizer.step()
|
301 |
+
lr_scheduler.step()
|
302 |
+
optimizer.zero_grad()
|
303 |
+
|
304 |
+
# Checks if the accelerator has performed an optimization step behind the scenes
|
305 |
+
if accelerator.sync_gradients:
|
306 |
+
progress_bar.update(1)
|
307 |
+
global_step += 1
|
308 |
+
accelerator.log({"train_loss": train_loss}, step=global_step)
|
309 |
+
train_loss = 0.0
|
310 |
+
|
311 |
+
if global_step % checkpointing_steps == 0:
|
312 |
+
if accelerator.is_main_process:
|
313 |
+
save_path = os.path.join(output_dir, f"checkpoint-{global_step}")
|
314 |
+
accelerator.save_state(save_path)
|
315 |
+
logger.info(f"Saved state to {save_path}")
|
316 |
+
|
317 |
+
if global_step % validation_steps == 0:
|
318 |
+
if accelerator.is_main_process:
|
319 |
+
samples = []
|
320 |
+
generator = torch.Generator(device=latents.device)
|
321 |
+
generator.manual_seed(seed)
|
322 |
+
|
323 |
+
ddim_inv_latent = None
|
324 |
+
if validation_data.use_inv_latent:
|
325 |
+
inv_latents_path = os.path.join(output_dir, f"inv_latents/ddim_latent-{global_step}.pt")
|
326 |
+
ddim_inv_latent = ddim_inversion(
|
327 |
+
validation_pipeline, ddim_inv_scheduler, video_latent=latents,
|
328 |
+
num_inv_steps=validation_data.num_inv_steps, prompt="")[-1].to(weight_dtype)
|
329 |
+
torch.save(ddim_inv_latent, inv_latents_path)
|
330 |
+
|
331 |
+
for idx, prompt in enumerate(validation_data.prompts):
|
332 |
+
sample = validation_pipeline(prompt, generator=generator, latents=ddim_inv_latent,
|
333 |
+
**validation_data).videos
|
334 |
+
save_videos_grid(sample, f"{output_dir}/samples/sample-{global_step}/{prompt}.gif")
|
335 |
+
samples.append(sample)
|
336 |
+
samples = torch.concat(samples)
|
337 |
+
save_path = f"{output_dir}/samples/sample-{global_step}.gif"
|
338 |
+
save_videos_grid(samples, save_path)
|
339 |
+
logger.info(f"Saved samples to {save_path}")
|
340 |
+
|
341 |
+
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
342 |
+
progress_bar.set_postfix(**logs)
|
343 |
+
|
344 |
+
if global_step >= max_train_steps:
|
345 |
+
break
|
346 |
+
|
347 |
+
# Create the pipeline using the trained modules and save it.
|
348 |
+
accelerator.wait_for_everyone()
|
349 |
+
if accelerator.is_main_process:
|
350 |
+
unet = accelerator.unwrap_model(unet)
|
351 |
+
pipeline = TuneAVideoPipeline.from_pretrained(
|
352 |
+
pretrained_model_path,
|
353 |
+
text_encoder=text_encoder,
|
354 |
+
vae=vae,
|
355 |
+
unet=unet,
|
356 |
+
)
|
357 |
+
pipeline.save_pretrained(output_dir)
|
358 |
+
|
359 |
+
accelerator.end_training()
|
360 |
+
|
361 |
+
|
362 |
+
if __name__ == "__main__":
|
363 |
+
parser = argparse.ArgumentParser()
|
364 |
+
parser.add_argument("--config", type=str, default="./configs/tuneavideo.yaml")
|
365 |
+
args = parser.parse_args()
|
366 |
+
|
367 |
+
main(**OmegaConf.load(args.config))
|
run_videop2p.py
ADDED
@@ -0,0 +1,707 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from typing import Optional, Union, Tuple, List, Callable, Dict
|
3 |
+
from tqdm.notebook import tqdm
|
4 |
+
import torch
|
5 |
+
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
|
6 |
+
import torch.nn.functional as nnf
|
7 |
+
import numpy as np
|
8 |
+
import abc
|
9 |
+
import ptp_utils
|
10 |
+
import seq_aligner
|
11 |
+
import shutil
|
12 |
+
from torch.optim.adam import Adam
|
13 |
+
from PIL import Image
|
14 |
+
from transformers import AutoTokenizer, CLIPTextModel, CLIPTokenizer
|
15 |
+
from einops import rearrange
|
16 |
+
|
17 |
+
from tuneavideo.models.unet import UNet3DConditionModel
|
18 |
+
from tuneavideo.pipelines.pipeline_tuneavideo import TuneAVideoPipeline
|
19 |
+
|
20 |
+
import cv2
|
21 |
+
import argparse
|
22 |
+
from omegaconf import OmegaConf
|
23 |
+
|
24 |
+
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False, set_alpha_to_one=False)
|
25 |
+
MY_TOKEN = ''
|
26 |
+
LOW_RESOURCE = False
|
27 |
+
NUM_DDIM_STEPS = 50
|
28 |
+
GUIDANCE_SCALE = 7.5
|
29 |
+
MAX_NUM_WORDS = 77
|
30 |
+
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
|
31 |
+
IRC = True
|
32 |
+
|
33 |
+
# need to adjust
|
34 |
+
cross_replace_steps = {'default_': .2,}
|
35 |
+
self_replace_steps = .5
|
36 |
+
mask_th = (.3, .3)
|
37 |
+
video_len = 8
|
38 |
+
|
39 |
+
def main(
|
40 |
+
pretrained_model_path: str,
|
41 |
+
image_path: str,
|
42 |
+
prompt: str,
|
43 |
+
prompts: Tuple[str],
|
44 |
+
blend_word: Tuple[str],
|
45 |
+
eq_params: Dict,
|
46 |
+
gif_folder: str,
|
47 |
+
gif_name_1: str,
|
48 |
+
gif_name_2: str,
|
49 |
+
IRC: bool,
|
50 |
+
):
|
51 |
+
blend_word = (((blend_word[0],), (blend_word[1],)))
|
52 |
+
eq_params["words"] = (eq_params["words"],)
|
53 |
+
eq_params["values"] = (eq_params["values"],)
|
54 |
+
eq_params = dict(eq_params)
|
55 |
+
prompts = list(prompts)
|
56 |
+
if not os.path.exists(gif_folder):
|
57 |
+
os.makedirs(gif_folder)
|
58 |
+
|
59 |
+
# Load the tokenizer
|
60 |
+
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
|
61 |
+
# Load models and create wrapper for stable diffusion
|
62 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
63 |
+
pretrained_model_path,
|
64 |
+
subfolder="text_encoder",
|
65 |
+
)
|
66 |
+
vae = AutoencoderKL.from_pretrained(
|
67 |
+
pretrained_model_path,
|
68 |
+
subfolder="vae",
|
69 |
+
)
|
70 |
+
unet = UNet3DConditionModel.from_pretrained(pretrained_model_path, subfolder="unet")
|
71 |
+
ldm_stable = TuneAVideoPipeline(
|
72 |
+
vae=vae,
|
73 |
+
text_encoder=text_encoder,
|
74 |
+
tokenizer=tokenizer,
|
75 |
+
unet=unet,
|
76 |
+
scheduler=scheduler,
|
77 |
+
).to(device)
|
78 |
+
|
79 |
+
try:
|
80 |
+
ldm_stable.disable_xformers_memory_efficient_attention()
|
81 |
+
except AttributeError:
|
82 |
+
print("Attribute disable_xformers_memory_efficient_attention() is missing")
|
83 |
+
tokenizer = ldm_stable.tokenizer # Tokenizer of class: [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer)
|
84 |
+
# A tokenizer breaks a stream of text into tokens, usually by looking for whitespace (tabs, spaces, new lines).
|
85 |
+
|
86 |
+
class LocalBlend:
|
87 |
+
|
88 |
+
def get_mask(self, maps, alpha, use_pool): # alpha is a word map
|
89 |
+
k = 1
|
90 |
+
maps = (maps * alpha).sum(-1).mean(2) # [2, 80, 1, 16, 16, 77], [2, 1, 1, 1, 1, 77]
|
91 |
+
if use_pool:
|
92 |
+
maps = nnf.max_pool2d(maps, (k * 2 + 1, k * 2 +1), (1, 1), padding=(k, k))
|
93 |
+
mask = nnf.interpolate(maps, size=(x_t.shape[3:]))
|
94 |
+
mask = mask / mask.max(2, keepdims=True)[0].max(3, keepdims=True)[0]
|
95 |
+
mask = mask.gt(self.th[1-int(use_pool)])
|
96 |
+
mask = mask[:1] + mask
|
97 |
+
return mask
|
98 |
+
|
99 |
+
def __call__(self, x_t, attention_store, step):
|
100 |
+
self.counter += 1
|
101 |
+
if self.counter > self.start_blend:
|
102 |
+
# attention_store["down_cross"]: 4, attention_store["up_cross"]:6, attention_store["down_cross"][0]: torch.Size([32, 1024, 77])
|
103 |
+
maps = attention_store["down_cross"][2:4] + attention_store["up_cross"][:3]
|
104 |
+
# maps = [item.reshape(self.alpha_layers.shape[0], -1, 1, 16, 16, MAX_NUM_WORDS) for item in maps]
|
105 |
+
maps = [item.reshape(self.alpha_layers.shape[0], -1, 8, 16, 16, MAX_NUM_WORDS) for item in maps]
|
106 |
+
maps = torch.cat(maps, dim=2)
|
107 |
+
# self.alpha_layers: torch.Size([2, 1, 1, 1, 1, 77])
|
108 |
+
mask = self.get_mask(maps, self.alpha_layers, True)
|
109 |
+
if self.substruct_layers is not None:
|
110 |
+
maps_sub = ~self.get_mask(maps, self.substruct_layers, False)
|
111 |
+
mask = mask * maps_sub
|
112 |
+
mask = mask.float()
|
113 |
+
mask = mask.reshape(-1, 1, mask.shape[-3], mask.shape[-2], mask.shape[-1])
|
114 |
+
|
115 |
+
x_t = x_t[:1] + mask * (x_t - x_t[:1]) # line13 algorithm
|
116 |
+
return x_t
|
117 |
+
|
118 |
+
def __init__(self, prompts: List[str], words: [List[List[str]]], substruct_words=None, start_blend=0.2, th=(.3, .3)):
|
119 |
+
alpha_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS)
|
120 |
+
for i, (prompt, words_) in enumerate(zip(prompts, words)):
|
121 |
+
if type(words_) is str:
|
122 |
+
words_ = [words_]
|
123 |
+
for word in words_:
|
124 |
+
ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
|
125 |
+
alpha_layers[i, :, :, :, :, ind] = 1
|
126 |
+
|
127 |
+
if substruct_words is not None:
|
128 |
+
substruct_layers = torch.zeros(len(prompts), 1, 1, 1, 1, MAX_NUM_WORDS)
|
129 |
+
for i, (prompt, words_) in enumerate(zip(prompts, substruct_words)):
|
130 |
+
if type(words_) is str:
|
131 |
+
words_ = [words_]
|
132 |
+
for word in words_:
|
133 |
+
ind = ptp_utils.get_word_inds(prompt, word, tokenizer)
|
134 |
+
substruct_layers[i, :, :, :, :, ind] = 1
|
135 |
+
self.substruct_layers = substruct_layers.to(device)
|
136 |
+
else:
|
137 |
+
self.substruct_layers = None
|
138 |
+
self.alpha_layers = alpha_layers.to(device)
|
139 |
+
self.start_blend = int(start_blend * NUM_DDIM_STEPS)
|
140 |
+
self.counter = 0
|
141 |
+
self.th=th
|
142 |
+
|
143 |
+
|
144 |
+
|
145 |
+
|
146 |
+
class EmptyControl:
|
147 |
+
|
148 |
+
|
149 |
+
def step_callback(self, x_t):
|
150 |
+
return x_t
|
151 |
+
|
152 |
+
def between_steps(self):
|
153 |
+
return
|
154 |
+
|
155 |
+
def __call__(self, attn, is_cross: bool, place_in_unet: str):
|
156 |
+
return attn
|
157 |
+
|
158 |
+
|
159 |
+
class AttentionControl(abc.ABC):
|
160 |
+
|
161 |
+
def step_callback(self, x_t):
|
162 |
+
return x_t
|
163 |
+
|
164 |
+
def between_steps(self):
|
165 |
+
return
|
166 |
+
|
167 |
+
@property
|
168 |
+
def num_uncond_att_layers(self):
|
169 |
+
return self.num_att_layers if LOW_RESOURCE else 0
|
170 |
+
|
171 |
+
@abc.abstractmethod
|
172 |
+
def forward (self, attn, is_cross: bool, place_in_unet: str):
|
173 |
+
raise NotImplementedError
|
174 |
+
|
175 |
+
def __call__(self, attn, is_cross: bool, place_in_unet: str):
|
176 |
+
if self.cur_att_layer >= self.num_uncond_att_layers:
|
177 |
+
if LOW_RESOURCE:
|
178 |
+
attn = self.forward(attn, is_cross, place_in_unet)
|
179 |
+
else:
|
180 |
+
h = attn.shape[0]
|
181 |
+
attn[h // 2:] = self.forward(attn[h // 2:], is_cross, place_in_unet)
|
182 |
+
self.cur_att_layer += 1
|
183 |
+
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
|
184 |
+
self.cur_att_layer = 0
|
185 |
+
self.cur_step += 1
|
186 |
+
self.between_steps()
|
187 |
+
return attn
|
188 |
+
|
189 |
+
def reset(self):
|
190 |
+
self.cur_step = 0
|
191 |
+
self.cur_att_layer = 0
|
192 |
+
|
193 |
+
def __init__(self):
|
194 |
+
self.cur_step = 0
|
195 |
+
self.num_att_layers = -1
|
196 |
+
self.cur_att_layer = 0
|
197 |
+
|
198 |
+
class SpatialReplace(EmptyControl):
|
199 |
+
|
200 |
+
def step_callback(self, x_t):
|
201 |
+
if self.cur_step < self.stop_inject:
|
202 |
+
b = x_t.shape[0]
|
203 |
+
x_t = x_t[:1].expand(b, *x_t.shape[1:])
|
204 |
+
return x_t
|
205 |
+
|
206 |
+
def __init__(self, stop_inject: float):
|
207 |
+
super(SpatialReplace, self).__init__()
|
208 |
+
self.stop_inject = int((1 - stop_inject) * NUM_DDIM_STEPS)
|
209 |
+
|
210 |
+
|
211 |
+
class AttentionStore(AttentionControl):
|
212 |
+
|
213 |
+
@staticmethod
|
214 |
+
def get_empty_store():
|
215 |
+
return {"down_cross": [], "mid_cross": [], "up_cross": [],
|
216 |
+
"down_self": [], "mid_self": [], "up_self": []}
|
217 |
+
|
218 |
+
def forward(self, attn, is_cross: bool, place_in_unet: str):
|
219 |
+
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
|
220 |
+
if attn.shape[1] <= 32 ** 2: # avoid memory overhead
|
221 |
+
self.step_store[key].append(attn) # 'down_self' torch.Size([32768, 8, 8])
|
222 |
+
return attn
|
223 |
+
|
224 |
+
def between_steps(self):
|
225 |
+
if len(self.attention_store) == 0:
|
226 |
+
self.attention_store = self.step_store
|
227 |
+
else:
|
228 |
+
for key in self.attention_store:
|
229 |
+
for i in range(len(self.attention_store[key])):
|
230 |
+
self.attention_store[key][i] += self.step_store[key][i]
|
231 |
+
self.step_store = self.get_empty_store()
|
232 |
+
|
233 |
+
def get_average_attention(self):
|
234 |
+
average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store}
|
235 |
+
return average_attention
|
236 |
+
|
237 |
+
|
238 |
+
def reset(self):
|
239 |
+
super(AttentionStore, self).reset()
|
240 |
+
self.step_store = self.get_empty_store()
|
241 |
+
self.attention_store = {}
|
242 |
+
|
243 |
+
def __init__(self):
|
244 |
+
super(AttentionStore, self).__init__()
|
245 |
+
self.step_store = self.get_empty_store()
|
246 |
+
self.attention_store = {}
|
247 |
+
|
248 |
+
|
249 |
+
class AttentionControlEdit(AttentionStore, abc.ABC):
|
250 |
+
|
251 |
+
def step_callback(self, x_t):
|
252 |
+
if self.local_blend is not None:
|
253 |
+
x_t = self.local_blend(x_t, self.attention_store, self.cur_step)
|
254 |
+
return x_t
|
255 |
+
|
256 |
+
def replace_self_attention(self, attn_base, att_replace, place_in_unet):
|
257 |
+
if att_replace.shape[2] <= 32 ** 2:
|
258 |
+
attn_base = attn_base.unsqueeze(0).expand(att_replace.shape[0], *attn_base.shape)
|
259 |
+
return attn_base
|
260 |
+
else:
|
261 |
+
return att_replace
|
262 |
+
|
263 |
+
@abc.abstractmethod
|
264 |
+
def replace_cross_attention(self, attn_base, att_replace):
|
265 |
+
raise NotImplementedError
|
266 |
+
|
267 |
+
def forward(self, attn, is_cross: bool, place_in_unet: str):
|
268 |
+
super(AttentionControlEdit, self).forward(attn, is_cross, place_in_unet)
|
269 |
+
if is_cross or (self.num_self_replace[0] <= self.cur_step < self.num_self_replace[1]):
|
270 |
+
h = attn.shape[0] // (self.batch_size)
|
271 |
+
attn = attn.reshape(self.batch_size, h, *attn.shape[1:])
|
272 |
+
attn_base, attn_repalce = attn[0], attn[1:]
|
273 |
+
if is_cross:
|
274 |
+
alpha_words = self.cross_replace_alpha[self.cur_step]
|
275 |
+
attn_repalce_new = self.replace_cross_attention(attn_base, attn_repalce) * alpha_words + (1 - alpha_words) * attn_repalce
|
276 |
+
attn[1:] = attn_repalce_new
|
277 |
+
else:
|
278 |
+
attn[1:] = self.replace_self_attention(attn_base, attn_repalce, place_in_unet)
|
279 |
+
attn = attn.reshape(self.batch_size * h, *attn.shape[2:])
|
280 |
+
return attn
|
281 |
+
|
282 |
+
def __init__(self, prompts, num_steps: int,
|
283 |
+
cross_replace_steps: Union[float, Tuple[float, float], Dict[str, Tuple[float, float]]],
|
284 |
+
self_replace_steps: Union[float, Tuple[float, float]],
|
285 |
+
local_blend: Optional[LocalBlend]):
|
286 |
+
super(AttentionControlEdit, self).__init__()
|
287 |
+
self.batch_size = len(prompts)
|
288 |
+
self.cross_replace_alpha = ptp_utils.get_time_words_attention_alpha(prompts, num_steps, cross_replace_steps, tokenizer).to(device)
|
289 |
+
if type(self_replace_steps) is float:
|
290 |
+
self_replace_steps = 0, self_replace_steps
|
291 |
+
self.num_self_replace = int(num_steps * self_replace_steps[0]), int(num_steps * self_replace_steps[1])
|
292 |
+
self.local_blend = local_blend
|
293 |
+
|
294 |
+
class AttentionReplace(AttentionControlEdit):
|
295 |
+
|
296 |
+
def replace_cross_attention(self, attn_base, att_replace):
|
297 |
+
return torch.einsum('hpw,bwn->bhpn', attn_base, self.mapper)
|
298 |
+
|
299 |
+
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
|
300 |
+
local_blend: Optional[LocalBlend] = None):
|
301 |
+
super(AttentionReplace, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
|
302 |
+
self.mapper = seq_aligner.get_replacement_mapper(prompts, tokenizer).to(device)
|
303 |
+
|
304 |
+
|
305 |
+
class AttentionRefine(AttentionControlEdit):
|
306 |
+
|
307 |
+
def replace_cross_attention(self, attn_base, att_replace):
|
308 |
+
attn_base_replace = attn_base[:, :, self.mapper].permute(2, 0, 1, 3)
|
309 |
+
attn_replace = attn_base_replace * self.alphas + att_replace * (1 - self.alphas)
|
310 |
+
return attn_replace
|
311 |
+
|
312 |
+
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float,
|
313 |
+
local_blend: Optional[LocalBlend] = None):
|
314 |
+
super(AttentionRefine, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
|
315 |
+
self.mapper, alphas = seq_aligner.get_refinement_mapper(prompts, tokenizer)
|
316 |
+
self.mapper, alphas = self.mapper.to(device), alphas.to(device)
|
317 |
+
self.alphas = alphas.reshape(alphas.shape[0], 1, 1, alphas.shape[1])
|
318 |
+
|
319 |
+
|
320 |
+
class AttentionReweight(AttentionControlEdit):
|
321 |
+
|
322 |
+
def replace_cross_attention(self, attn_base, att_replace):
|
323 |
+
if self.prev_controller is not None:
|
324 |
+
attn_base = self.prev_controller.replace_cross_attention(attn_base, att_replace)
|
325 |
+
attn_replace = attn_base[None, :, :, :] * self.equalizer[:, None, None, :]
|
326 |
+
return attn_replace
|
327 |
+
|
328 |
+
def __init__(self, prompts, num_steps: int, cross_replace_steps: float, self_replace_steps: float, equalizer,
|
329 |
+
local_blend: Optional[LocalBlend] = None, controller: Optional[AttentionControlEdit] = None):
|
330 |
+
super(AttentionReweight, self).__init__(prompts, num_steps, cross_replace_steps, self_replace_steps, local_blend)
|
331 |
+
self.equalizer = equalizer.to(device)
|
332 |
+
self.prev_controller = controller
|
333 |
+
|
334 |
+
|
335 |
+
def get_equalizer(text: str, word_select: Union[int, Tuple[int, ...]], values: Union[List[float],
|
336 |
+
Tuple[float, ...]]):
|
337 |
+
if type(word_select) is int or type(word_select) is str:
|
338 |
+
word_select = (word_select,)
|
339 |
+
equalizer = torch.ones(1, 77)
|
340 |
+
|
341 |
+
for word, val in zip(word_select, values):
|
342 |
+
inds = ptp_utils.get_word_inds(text, word, tokenizer)
|
343 |
+
equalizer[:, inds] = val
|
344 |
+
return equalizer
|
345 |
+
|
346 |
+
def aggregate_attention(attention_store: AttentionStore, res: int, from_where: List[str], is_cross: bool, select: int):
|
347 |
+
out = []
|
348 |
+
attention_maps = attention_store.get_average_attention()
|
349 |
+
num_pixels = res ** 2
|
350 |
+
for location in from_where:
|
351 |
+
for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
|
352 |
+
if item.shape[1] == num_pixels: # torch.Size([64, 256, 77]) all can pass
|
353 |
+
cross_maps = item.reshape(8, 8, res, res, item.shape[-1])
|
354 |
+
out.append(cross_maps)
|
355 |
+
out = torch.cat(out, dim=1)
|
356 |
+
out = out.sum(1) / out.shape[1]
|
357 |
+
return out.cpu()
|
358 |
+
|
359 |
+
|
360 |
+
def make_controller(prompts: List[str], is_replace_controller: bool, cross_replace_steps: Dict[str, float], self_replace_steps: float, blend_words=None, equilizer_params=None, mask_th=(.3,.3)) -> AttentionControlEdit:
|
361 |
+
if blend_words is None:
|
362 |
+
lb = None
|
363 |
+
else:
|
364 |
+
lb = LocalBlend(prompts, blend_word, th=mask_th)
|
365 |
+
if is_replace_controller:
|
366 |
+
controller = AttentionReplace(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, local_blend=lb)
|
367 |
+
else:
|
368 |
+
controller = AttentionRefine(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps, self_replace_steps=self_replace_steps, local_blend=lb)
|
369 |
+
if equilizer_params is not None:
|
370 |
+
eq = get_equalizer(prompts[1], equilizer_params["words"], equilizer_params["values"])
|
371 |
+
controller = AttentionReweight(prompts, NUM_DDIM_STEPS, cross_replace_steps=cross_replace_steps,
|
372 |
+
self_replace_steps=self_replace_steps, equalizer=eq, local_blend=lb, controller=controller)
|
373 |
+
return controller
|
374 |
+
|
375 |
+
|
376 |
+
def load_512_seq(image_path, left=0, right=0, top=0, bottom=0, n_sample_frame=video_len, sampling_rate=1):
|
377 |
+
images = []
|
378 |
+
for file in sorted(os.listdir(image_path)):
|
379 |
+
images.append(file)
|
380 |
+
n_images = len(images)
|
381 |
+
sequence_length = (n_sample_frame - 1) * sampling_rate + 1
|
382 |
+
if n_images < sequence_length:
|
383 |
+
raise ValueError
|
384 |
+
frames = []
|
385 |
+
for index in range(n_sample_frame):
|
386 |
+
p = os.path.join(image_path, images[index])
|
387 |
+
image = np.array(Image.open(p).convert("RGB"))
|
388 |
+
h, w, c = image.shape
|
389 |
+
left = min(left, w-1)
|
390 |
+
right = min(right, w - left - 1)
|
391 |
+
top = min(top, h - left - 1)
|
392 |
+
bottom = min(bottom, h - top - 1)
|
393 |
+
image = image[top:h-bottom, left:w-right]
|
394 |
+
h, w, c = image.shape
|
395 |
+
if h < w:
|
396 |
+
offset = (w - h) // 2
|
397 |
+
image = image[:, offset:offset + h]
|
398 |
+
elif w < h:
|
399 |
+
offset = (h - w) // 2
|
400 |
+
image = image[offset:offset + w]
|
401 |
+
image = np.array(Image.fromarray(image).resize((512, 512)))
|
402 |
+
frames.append(image)
|
403 |
+
return np.stack(frames)
|
404 |
+
|
405 |
+
|
406 |
+
class NullInversion:
|
407 |
+
|
408 |
+
def prev_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]):
|
409 |
+
prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
|
410 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
|
411 |
+
alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod
|
412 |
+
beta_prod_t = 1 - alpha_prod_t
|
413 |
+
pred_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
|
414 |
+
pred_sample_direction = (1 - alpha_prod_t_prev) ** 0.5 * model_output
|
415 |
+
prev_sample = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
|
416 |
+
return prev_sample
|
417 |
+
|
418 |
+
def next_step(self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray]): # doing inversion (math)
|
419 |
+
timestep, next_timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999), timestep
|
420 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
|
421 |
+
alpha_prod_t_next = self.scheduler.alphas_cumprod[next_timestep]
|
422 |
+
beta_prod_t = 1 - alpha_prod_t
|
423 |
+
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
|
424 |
+
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
|
425 |
+
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
|
426 |
+
return next_sample
|
427 |
+
|
428 |
+
def get_noise_pred_single(self, latents, t, context): # latents: torch.Size([1, 4, 64, 64]); t: tensor(1); context: torch.Size([1, 77, 768])
|
429 |
+
# formats are correct for video unet input; Tune-A-Video also predicts the residual
|
430 |
+
noise_pred = self.model.unet(latents, t, encoder_hidden_states=context)["sample"] # easy to out of mem
|
431 |
+
return noise_pred
|
432 |
+
|
433 |
+
def get_noise_pred(self, latents, t, is_forward=True, context=None):
|
434 |
+
latents_input = torch.cat([latents] * 2)
|
435 |
+
if context is None:
|
436 |
+
context = self.context
|
437 |
+
guidance_scale = 1 if is_forward else GUIDANCE_SCALE
|
438 |
+
noise_pred = self.model.unet(latents_input, t, encoder_hidden_states=context)["sample"]
|
439 |
+
noise_pred_uncond, noise_prediction_text = noise_pred.chunk(2)
|
440 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_prediction_text - noise_pred_uncond)
|
441 |
+
if is_forward:
|
442 |
+
latents = self.next_step(noise_pred, t, latents)
|
443 |
+
else:
|
444 |
+
latents = self.prev_step(noise_pred, t, latents)
|
445 |
+
return latents
|
446 |
+
|
447 |
+
@torch.no_grad()
|
448 |
+
def latent2image(self, latents, return_type='np'):
|
449 |
+
latents = 1 / 0.18215 * latents.detach()
|
450 |
+
image = self.model.vae.decode(latents)['sample']
|
451 |
+
if return_type == 'np':
|
452 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
453 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
|
454 |
+
image = (image * 255).astype(np.uint8)
|
455 |
+
return image
|
456 |
+
|
457 |
+
@torch.no_grad()
|
458 |
+
def latent2image_video(self, latents, return_type='np'):
|
459 |
+
latents = 1 / 0.18215 * latents.detach()
|
460 |
+
latents = latents[0].permute(1, 0, 2, 3)
|
461 |
+
image = self.model.vae.decode(latents)['sample']
|
462 |
+
if return_type == 'np':
|
463 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
464 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
465 |
+
image = (image * 255).astype(np.uint8)
|
466 |
+
return image
|
467 |
+
|
468 |
+
@torch.no_grad()
|
469 |
+
def image2latent(self, image):
|
470 |
+
with torch.no_grad():
|
471 |
+
if type(image) is Image:
|
472 |
+
image = np.array(image)
|
473 |
+
if type(image) is torch.Tensor and image.dim() == 4:
|
474 |
+
latents = image
|
475 |
+
else:
|
476 |
+
image = torch.from_numpy(image).float() / 127.5 - 1
|
477 |
+
image = image.permute(2, 0, 1).unsqueeze(0).to(device)
|
478 |
+
latents = self.model.vae.encode(image)['latent_dist'].mean
|
479 |
+
latents = latents * 0.18215
|
480 |
+
return latents
|
481 |
+
|
482 |
+
@torch.no_grad()
|
483 |
+
def image2latent_video(self, image):
|
484 |
+
with torch.no_grad():
|
485 |
+
image = torch.from_numpy(image).float() / 127.5 - 1
|
486 |
+
image = image.permute(0, 3, 1, 2).to(device)
|
487 |
+
latents = self.model.vae.encode(image)['latent_dist'].mean
|
488 |
+
latents = rearrange(latents, "(b f) c h w -> b c f h w", b=1)
|
489 |
+
latents = latents * 0.18215
|
490 |
+
return latents
|
491 |
+
|
492 |
+
@torch.no_grad()
|
493 |
+
def init_prompt(self, prompt: str):
|
494 |
+
uncond_input = self.model.tokenizer(
|
495 |
+
[""], padding="max_length", max_length=self.model.tokenizer.model_max_length,
|
496 |
+
return_tensors="pt"
|
497 |
+
)
|
498 |
+
uncond_embeddings = self.model.text_encoder(uncond_input.input_ids.to(self.model.device))[0] # len=2, uncond_embeddings
|
499 |
+
text_input = self.model.tokenizer(
|
500 |
+
[prompt],
|
501 |
+
padding="max_length",
|
502 |
+
max_length=self.model.tokenizer.model_max_length,
|
503 |
+
truncation=True,
|
504 |
+
return_tensors="pt",
|
505 |
+
)
|
506 |
+
text_embeddings = self.model.text_encoder(text_input.input_ids.to(self.model.device))[0]
|
507 |
+
self.context = torch.cat([uncond_embeddings, text_embeddings])
|
508 |
+
self.prompt = prompt
|
509 |
+
|
510 |
+
@torch.no_grad()
|
511 |
+
def ddim_loop(self, latent):
|
512 |
+
uncond_embeddings, cond_embeddings = self.context.chunk(2)
|
513 |
+
all_latent = [latent]
|
514 |
+
latent = latent.clone().detach()
|
515 |
+
for i in range(NUM_DDIM_STEPS):
|
516 |
+
t = self.model.scheduler.timesteps[len(self.model.scheduler.timesteps) - i - 1]
|
517 |
+
# latent: torch.Size([1, 4, 8, 16, 16])
|
518 |
+
# cond_embeddings: torch.Size([1, 77, 768])
|
519 |
+
# noise_pred: torch.Size([1, 4, 8, 16, 16])
|
520 |
+
noise_pred = self.get_noise_pred_single(latent, t, cond_embeddings) # use a unet
|
521 |
+
latent = self.next_step(noise_pred, t, latent)
|
522 |
+
all_latent.append(latent)
|
523 |
+
return all_latent
|
524 |
+
|
525 |
+
@property
|
526 |
+
def scheduler(self):
|
527 |
+
return self.model.scheduler
|
528 |
+
|
529 |
+
@torch.no_grad()
|
530 |
+
def ddim_inversion(self, image):
|
531 |
+
latent = self.image2latent_video(image)
|
532 |
+
image_rec = self.latent2image_video(latent) # image: (512, 512, 3); latent: torch.Size([1, 4, 64, 64])
|
533 |
+
ddim_latents = self.ddim_loop(latent)
|
534 |
+
return image_rec, ddim_latents
|
535 |
+
|
536 |
+
def null_optimization(self, latents, num_inner_steps, epsilon): # uncond_embeddings is what we what
|
537 |
+
uncond_embeddings, cond_embeddings = self.context.chunk(2)
|
538 |
+
uncond_embeddings_list = []
|
539 |
+
latent_cur = latents[-1]
|
540 |
+
bar = tqdm(total=num_inner_steps * NUM_DDIM_STEPS)
|
541 |
+
for i in range(NUM_DDIM_STEPS):
|
542 |
+
uncond_embeddings = uncond_embeddings.clone().detach()
|
543 |
+
uncond_embeddings.requires_grad = True
|
544 |
+
optimizer = Adam([uncond_embeddings], lr=1e-2 * (1. - i / 100.))
|
545 |
+
latent_prev = latents[len(latents) - i - 2] # GT
|
546 |
+
t = self.model.scheduler.timesteps[i]
|
547 |
+
with torch.no_grad():
|
548 |
+
noise_pred_cond = self.get_noise_pred_single(latent_cur, t, cond_embeddings)
|
549 |
+
for j in range(num_inner_steps):
|
550 |
+
noise_pred_uncond = self.get_noise_pred_single(latent_cur, t, uncond_embeddings)
|
551 |
+
noise_pred = noise_pred_uncond + GUIDANCE_SCALE * (noise_pred_cond - noise_pred_uncond)
|
552 |
+
latents_prev_rec = self.prev_step(noise_pred, t, latent_cur)
|
553 |
+
loss = nnf.mse_loss(latents_prev_rec, latent_prev)
|
554 |
+
optimizer.zero_grad()
|
555 |
+
loss.backward()
|
556 |
+
optimizer.step()
|
557 |
+
loss_item = loss.item()
|
558 |
+
bar.update()
|
559 |
+
if loss_item < epsilon + i * 2e-5:
|
560 |
+
break
|
561 |
+
for j in range(j + 1, num_inner_steps):
|
562 |
+
bar.update()
|
563 |
+
uncond_embeddings_list.append(uncond_embeddings[:1].detach())
|
564 |
+
with torch.no_grad():
|
565 |
+
context = torch.cat([uncond_embeddings, cond_embeddings])
|
566 |
+
latent_cur = self.get_noise_pred(latent_cur, t, False, context)
|
567 |
+
bar.close()
|
568 |
+
return uncond_embeddings_list
|
569 |
+
|
570 |
+
def invert(self, image_path: str, prompt: str, offsets=(0,0,0,0), num_inner_steps=10, early_stop_epsilon=1e-5, verbose=False):
|
571 |
+
self.init_prompt(prompt)
|
572 |
+
ptp_utils.register_attention_control(self.model, None)
|
573 |
+
image_gt = load_512_seq(image_path, *offsets)
|
574 |
+
if verbose:
|
575 |
+
print("DDIM inversion...")
|
576 |
+
image_rec, ddim_latents = self.ddim_inversion(image_gt) # ddim_latents is a list, like the link in Figure 3
|
577 |
+
# image_rec refers to vq-autoencoder reconstruction
|
578 |
+
if verbose:
|
579 |
+
print("Null-text optimization...")
|
580 |
+
uncond_embeddings = self.null_optimization(ddim_latents, num_inner_steps, early_stop_epsilon) # ddim_latents serve as GT; easy to out of mem
|
581 |
+
return (image_gt, image_rec), ddim_latents[-1], uncond_embeddings
|
582 |
+
|
583 |
+
def invert_(self, image_path: str, prompt: str, offsets=(0,0,0,0), num_inner_steps=10, early_stop_epsilon=1e-5, verbose=False):
|
584 |
+
self.init_prompt(prompt)
|
585 |
+
ptp_utils.register_attention_control(self.model, None)
|
586 |
+
image_gt = load_512_seq(image_path, *offsets)
|
587 |
+
if verbose:
|
588 |
+
print("DDIM inversion...")
|
589 |
+
image_rec, ddim_latents = self.ddim_inversion(image_gt) # ddim_latents is a list, like the link in Figure 3
|
590 |
+
# image_rec refers to vq-autoencoder reconstruction
|
591 |
+
if verbose:
|
592 |
+
print("Null-text optimization...")
|
593 |
+
return (image_gt, image_rec), ddim_latents[-1], None
|
594 |
+
|
595 |
+
def __init__(self, model):
|
596 |
+
scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", clip_sample=False,
|
597 |
+
set_alpha_to_one=False)
|
598 |
+
self.model = model
|
599 |
+
self.tokenizer = self.model.tokenizer
|
600 |
+
self.model.scheduler.set_timesteps(NUM_DDIM_STEPS)
|
601 |
+
self.prompt = None
|
602 |
+
self.context = None
|
603 |
+
|
604 |
+
null_inversion = NullInversion(ldm_stable)
|
605 |
+
|
606 |
+
|
607 |
+
@torch.no_grad()
|
608 |
+
def text2image_ldm_stable(
|
609 |
+
model,
|
610 |
+
prompt: List[str],
|
611 |
+
controller,
|
612 |
+
num_inference_steps: int = 50,
|
613 |
+
guidance_scale: Optional[float] = 7.5,
|
614 |
+
generator: Optional[torch.Generator] = None,
|
615 |
+
latent: Optional[torch.FloatTensor] = None,
|
616 |
+
uncond_embeddings=None,
|
617 |
+
start_time=50,
|
618 |
+
return_type='image'
|
619 |
+
):
|
620 |
+
batch_size = len(prompt)
|
621 |
+
ptp_utils.register_attention_control(model, controller)
|
622 |
+
height = width = 512
|
623 |
+
|
624 |
+
text_input = model.tokenizer(
|
625 |
+
prompt,
|
626 |
+
padding="max_length",
|
627 |
+
max_length=model.tokenizer.model_max_length,
|
628 |
+
truncation=True,
|
629 |
+
return_tensors="pt",
|
630 |
+
)
|
631 |
+
text_embeddings = model.text_encoder(text_input.input_ids.to(model.device))[0]
|
632 |
+
|
633 |
+
max_length = text_input.input_ids.shape[-1]
|
634 |
+
if uncond_embeddings is None:
|
635 |
+
uncond_input = model.tokenizer(
|
636 |
+
[""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
|
637 |
+
)
|
638 |
+
uncond_embeddings_ = model.text_encoder(uncond_input.input_ids.to(model.device))[0]
|
639 |
+
else:
|
640 |
+
uncond_embeddings_ = None
|
641 |
+
|
642 |
+
model.scheduler.set_timesteps(num_inference_steps)
|
643 |
+
for i, t in enumerate(tqdm(model.scheduler.timesteps[-start_time:])):
|
644 |
+
if uncond_embeddings_ is None:
|
645 |
+
context = torch.cat([uncond_embeddings[i].expand(*text_embeddings.shape), text_embeddings])
|
646 |
+
else:
|
647 |
+
context = torch.cat([uncond_embeddings_, text_embeddings])
|
648 |
+
latents = latent
|
649 |
+
latents = ptp_utils.diffusion_step(model, controller, latents, context, t, guidance_scale, low_resource=False)
|
650 |
+
if return_type == 'image':
|
651 |
+
image = ptp_utils.latent2image_video(model.vae, latents)
|
652 |
+
else:
|
653 |
+
image = latents
|
654 |
+
return image, latent
|
655 |
+
|
656 |
+
|
657 |
+
###############
|
658 |
+
# Custom APIs:
|
659 |
+
|
660 |
+
ldm_stable.enable_xformers_memory_efficient_attention()
|
661 |
+
|
662 |
+
(image_gt, image_enc), x_t, uncond_embeddings = null_inversion.invert_(image_path, prompt, offsets=(0,0,0,0), verbose=True)
|
663 |
+
|
664 |
+
##### load uncond #####
|
665 |
+
# uncond_embeddings_load = np.load(uncond_embeddings_path)
|
666 |
+
# uncond_embeddings = []
|
667 |
+
# for i in range(uncond_embeddings_load.shape[0]):
|
668 |
+
# uncond_embeddings.append(torch.from_numpy(uncond_embeddings_load[i]).to(device))
|
669 |
+
#######################
|
670 |
+
|
671 |
+
##### save uncond #####
|
672 |
+
# uncond_embeddings = torch.cat(uncond_embeddings)
|
673 |
+
# uncond_embeddings = uncond_embeddings.cpu().numpy()
|
674 |
+
#######################
|
675 |
+
|
676 |
+
print("Start Video-P2P!")
|
677 |
+
|
678 |
+
controller = make_controller(prompts, IRC, cross_replace_steps, self_replace_steps, blend_word, eq_params, mask_th=mask_th)
|
679 |
+
ptp_utils.register_attention_control(ldm_stable, controller)
|
680 |
+
generator = torch.Generator(device=device)
|
681 |
+
with torch.no_grad():
|
682 |
+
sequence = ldm_stable(
|
683 |
+
prompts,
|
684 |
+
generator=generator,
|
685 |
+
latents=x_t,
|
686 |
+
uncond_embeddings_pre=uncond_embeddings,
|
687 |
+
controller = controller,
|
688 |
+
video_length=video_len,
|
689 |
+
simple=True,
|
690 |
+
).videos
|
691 |
+
sequence1 = rearrange(sequence[0], "c t h w -> t h w c")
|
692 |
+
sequence2 = rearrange(sequence[1], "c t h w -> t h w c")
|
693 |
+
inversion = []
|
694 |
+
videop2p = []
|
695 |
+
for i in range(sequence1.shape[0]):
|
696 |
+
inversion.append( Image.fromarray((sequence1[i] * 255).numpy().astype(np.uint8)) )
|
697 |
+
videop2p.append( Image.fromarray((sequence2[i] * 255).numpy().astype(np.uint8)) )
|
698 |
+
|
699 |
+
inversion[0].save(gif_name_1.replace('name', 'inversion_simple_debug'), save_all=True, append_images=inversion[1:], optimize=False, loop=0, duration=250)
|
700 |
+
videop2p[0].save(gif_name_2.replace('name', 'p2p_simple_debug'), save_all=True, append_images=videop2p[1:], optimize=False, loop=0, duration=250)
|
701 |
+
|
702 |
+
if __name__ == "__main__":
|
703 |
+
parser = argparse.ArgumentParser()
|
704 |
+
parser.add_argument("--config", type=str, default="./configs/videop2p.yaml")
|
705 |
+
args = parser.parse_args()
|
706 |
+
|
707 |
+
main(**OmegaConf.load(args.config))
|
script.sh
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# python run_tuning.py --config="configs/rabbit-jump.yaml"
|
2 |
+
|
3 |
+
python run_videop2p.py --config="configs/rabbit-jump-p2p.yaml"
|
4 |
+
|
5 |
+
# python run_tuning.py --config="configs/man-motor.yaml"
|
seq_aligner.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 Google LLC
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import torch
|
15 |
+
import numpy as np
|
16 |
+
|
17 |
+
|
18 |
+
class ScoreParams:
|
19 |
+
|
20 |
+
def __init__(self, gap, match, mismatch):
|
21 |
+
self.gap = gap
|
22 |
+
self.match = match
|
23 |
+
self.mismatch = mismatch
|
24 |
+
|
25 |
+
def mis_match_char(self, x, y):
|
26 |
+
if x != y:
|
27 |
+
return self.mismatch
|
28 |
+
else:
|
29 |
+
return self.match
|
30 |
+
|
31 |
+
|
32 |
+
def get_matrix(size_x, size_y, gap):
|
33 |
+
matrix = []
|
34 |
+
for i in range(len(size_x) + 1):
|
35 |
+
sub_matrix = []
|
36 |
+
for j in range(len(size_y) + 1):
|
37 |
+
sub_matrix.append(0)
|
38 |
+
matrix.append(sub_matrix)
|
39 |
+
for j in range(1, len(size_y) + 1):
|
40 |
+
matrix[0][j] = j*gap
|
41 |
+
for i in range(1, len(size_x) + 1):
|
42 |
+
matrix[i][0] = i*gap
|
43 |
+
return matrix
|
44 |
+
|
45 |
+
|
46 |
+
def get_matrix(size_x, size_y, gap):
|
47 |
+
matrix = np.zeros((size_x + 1, size_y + 1), dtype=np.int32)
|
48 |
+
matrix[0, 1:] = (np.arange(size_y) + 1) * gap
|
49 |
+
matrix[1:, 0] = (np.arange(size_x) + 1) * gap
|
50 |
+
return matrix
|
51 |
+
|
52 |
+
|
53 |
+
def get_traceback_matrix(size_x, size_y):
|
54 |
+
matrix = np.zeros((size_x + 1, size_y +1), dtype=np.int32)
|
55 |
+
matrix[0, 1:] = 1
|
56 |
+
matrix[1:, 0] = 2
|
57 |
+
matrix[0, 0] = 4
|
58 |
+
return matrix
|
59 |
+
|
60 |
+
|
61 |
+
def global_align(x, y, score):
|
62 |
+
matrix = get_matrix(len(x), len(y), score.gap)
|
63 |
+
trace_back = get_traceback_matrix(len(x), len(y))
|
64 |
+
for i in range(1, len(x) + 1):
|
65 |
+
for j in range(1, len(y) + 1):
|
66 |
+
left = matrix[i, j - 1] + score.gap
|
67 |
+
up = matrix[i - 1, j] + score.gap
|
68 |
+
diag = matrix[i - 1, j - 1] + score.mis_match_char(x[i - 1], y[j - 1])
|
69 |
+
matrix[i, j] = max(left, up, diag)
|
70 |
+
if matrix[i, j] == left:
|
71 |
+
trace_back[i, j] = 1
|
72 |
+
elif matrix[i, j] == up:
|
73 |
+
trace_back[i, j] = 2
|
74 |
+
else:
|
75 |
+
trace_back[i, j] = 3
|
76 |
+
return matrix, trace_back
|
77 |
+
|
78 |
+
|
79 |
+
def get_aligned_sequences(x, y, trace_back):
|
80 |
+
x_seq = []
|
81 |
+
y_seq = []
|
82 |
+
i = len(x)
|
83 |
+
j = len(y)
|
84 |
+
mapper_y_to_x = []
|
85 |
+
while i > 0 or j > 0:
|
86 |
+
if trace_back[i, j] == 3:
|
87 |
+
x_seq.append(x[i-1])
|
88 |
+
y_seq.append(y[j-1])
|
89 |
+
i = i-1
|
90 |
+
j = j-1
|
91 |
+
mapper_y_to_x.append((j, i))
|
92 |
+
elif trace_back[i][j] == 1:
|
93 |
+
x_seq.append('-')
|
94 |
+
y_seq.append(y[j-1])
|
95 |
+
j = j-1
|
96 |
+
mapper_y_to_x.append((j, -1))
|
97 |
+
elif trace_back[i][j] == 2:
|
98 |
+
x_seq.append(x[i-1])
|
99 |
+
y_seq.append('-')
|
100 |
+
i = i-1
|
101 |
+
elif trace_back[i][j] == 4:
|
102 |
+
break
|
103 |
+
mapper_y_to_x.reverse()
|
104 |
+
return x_seq, y_seq, torch.tensor(mapper_y_to_x, dtype=torch.int64)
|
105 |
+
|
106 |
+
|
107 |
+
def get_mapper(x: str, y: str, tokenizer, max_len=77):
|
108 |
+
x_seq = tokenizer.encode(x)
|
109 |
+
y_seq = tokenizer.encode(y)
|
110 |
+
score = ScoreParams(0, 1, -1)
|
111 |
+
matrix, trace_back = global_align(x_seq, y_seq, score)
|
112 |
+
mapper_base = get_aligned_sequences(x_seq, y_seq, trace_back)[-1]
|
113 |
+
alphas = torch.ones(max_len)
|
114 |
+
alphas[: mapper_base.shape[0]] = mapper_base[:, 1].ne(-1).float()
|
115 |
+
mapper = torch.zeros(max_len, dtype=torch.int64)
|
116 |
+
mapper[:mapper_base.shape[0]] = mapper_base[:, 1]
|
117 |
+
mapper[mapper_base.shape[0]:] = len(y_seq) + torch.arange(max_len - len(y_seq))
|
118 |
+
return mapper, alphas
|
119 |
+
|
120 |
+
|
121 |
+
def get_refinement_mapper(prompts, tokenizer, max_len=77):
|
122 |
+
x_seq = prompts[0]
|
123 |
+
mappers, alphas = [], []
|
124 |
+
for i in range(1, len(prompts)):
|
125 |
+
mapper, alpha = get_mapper(x_seq, prompts[i], tokenizer, max_len)
|
126 |
+
mappers.append(mapper)
|
127 |
+
alphas.append(alpha)
|
128 |
+
return torch.stack(mappers), torch.stack(alphas)
|
129 |
+
|
130 |
+
|
131 |
+
def get_word_inds(text: str, word_place: int, tokenizer):
|
132 |
+
split_text = text.split(" ")
|
133 |
+
if type(word_place) is str:
|
134 |
+
word_place = [i for i, word in enumerate(split_text) if word_place == word]
|
135 |
+
elif type(word_place) is int:
|
136 |
+
word_place = [word_place]
|
137 |
+
out = []
|
138 |
+
if len(word_place) > 0:
|
139 |
+
words_encode = [tokenizer.decode([item]).strip("#") for item in tokenizer.encode(text)][1:-1]
|
140 |
+
cur_len, ptr = 0, 0
|
141 |
+
|
142 |
+
for i in range(len(words_encode)):
|
143 |
+
cur_len += len(words_encode[i])
|
144 |
+
if ptr in word_place:
|
145 |
+
out.append(i + 1)
|
146 |
+
if cur_len >= len(split_text[ptr]):
|
147 |
+
ptr += 1
|
148 |
+
cur_len = 0
|
149 |
+
return np.array(out)
|
150 |
+
|
151 |
+
|
152 |
+
def get_replacement_mapper_(x: str, y: str, tokenizer, max_len=77):
|
153 |
+
words_x = x.split(' ')
|
154 |
+
words_y = y.split(' ')
|
155 |
+
if len(words_x) != len(words_y):
|
156 |
+
raise ValueError(f"attention replacement edit can only be applied on prompts with the same length"
|
157 |
+
f" but prompt A has {len(words_x)} words and prompt B has {len(words_y)} words.")
|
158 |
+
inds_replace = [i for i in range(len(words_y)) if words_y[i] != words_x[i]]
|
159 |
+
inds_source = [get_word_inds(x, i, tokenizer) for i in inds_replace]
|
160 |
+
inds_target = [get_word_inds(y, i, tokenizer) for i in inds_replace]
|
161 |
+
mapper = np.zeros((max_len, max_len))
|
162 |
+
i = j = 0
|
163 |
+
cur_inds = 0
|
164 |
+
while i < max_len and j < max_len:
|
165 |
+
if cur_inds < len(inds_source) and inds_source[cur_inds][0] == i:
|
166 |
+
inds_source_, inds_target_ = inds_source[cur_inds], inds_target[cur_inds]
|
167 |
+
if len(inds_source_) == len(inds_target_):
|
168 |
+
mapper[inds_source_, inds_target_] = 1
|
169 |
+
else:
|
170 |
+
ratio = 1 / len(inds_target_)
|
171 |
+
for i_t in inds_target_:
|
172 |
+
mapper[inds_source_, i_t] = ratio
|
173 |
+
cur_inds += 1
|
174 |
+
i += len(inds_source_)
|
175 |
+
j += len(inds_target_)
|
176 |
+
elif cur_inds < len(inds_source):
|
177 |
+
mapper[i, j] = 1
|
178 |
+
i += 1
|
179 |
+
j += 1
|
180 |
+
else:
|
181 |
+
mapper[j, j] = 1
|
182 |
+
i += 1
|
183 |
+
j += 1
|
184 |
+
|
185 |
+
return torch.from_numpy(mapper).float()
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
def get_replacement_mapper(prompts, tokenizer, max_len=77):
|
190 |
+
x_seq = prompts[0]
|
191 |
+
mappers = []
|
192 |
+
for i in range(1, len(prompts)):
|
193 |
+
mapper = get_replacement_mapper_(x_seq, prompts[i], tokenizer, max_len)
|
194 |
+
mappers.append(mapper)
|
195 |
+
return torch.stack(mappers)
|
196 |
+
|
tuneavideo/data/dataset.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import decord
|
2 |
+
decord.bridge.set_bridge('torch')
|
3 |
+
|
4 |
+
from torch.utils.data import Dataset
|
5 |
+
from einops import rearrange
|
6 |
+
import os
|
7 |
+
from PIL import Image
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
class TuneAVideoDataset(Dataset):
|
11 |
+
def __init__(
|
12 |
+
self,
|
13 |
+
video_path: str,
|
14 |
+
prompt: str,
|
15 |
+
width: int = 512,
|
16 |
+
height: int = 512,
|
17 |
+
n_sample_frames: int = 8,
|
18 |
+
sample_start_idx: int = 0,
|
19 |
+
sample_frame_rate: int = 1,
|
20 |
+
):
|
21 |
+
self.video_path = video_path
|
22 |
+
self.prompt = prompt
|
23 |
+
self.prompt_ids = None
|
24 |
+
self.uncond_prompt_ids = None
|
25 |
+
|
26 |
+
self.width = width
|
27 |
+
self.height = height
|
28 |
+
self.n_sample_frames = n_sample_frames
|
29 |
+
self.sample_start_idx = sample_start_idx
|
30 |
+
self.sample_frame_rate = sample_frame_rate
|
31 |
+
|
32 |
+
if 'mp4' not in self.video_path:
|
33 |
+
self.images = []
|
34 |
+
for file in sorted(os.listdir(self.video_path), key=lambda x: int(x[:-4])):
|
35 |
+
if file.endswith('jpg'):
|
36 |
+
self.images.append(np.asarray(Image.open(os.path.join(self.video_path, file)).convert('RGB').resize((self.width, self.height))))
|
37 |
+
self.images = np.stack(self.images)
|
38 |
+
|
39 |
+
def __len__(self):
|
40 |
+
return 1
|
41 |
+
|
42 |
+
def __getitem__(self, index):
|
43 |
+
# load and sample video frames
|
44 |
+
if 'mp4' in self.video_path:
|
45 |
+
vr = decord.VideoReader(self.video_path, width=self.width, height=self.height)
|
46 |
+
sample_index = list(range(self.sample_start_idx, len(vr), self.sample_frame_rate))[:self.n_sample_frames]
|
47 |
+
video = vr.get_batch(sample_index)
|
48 |
+
else:
|
49 |
+
video = self.images[:self.n_sample_frames]
|
50 |
+
video = rearrange(video, "f h w c -> f c h w")
|
51 |
+
|
52 |
+
example = {
|
53 |
+
"pixel_values": (video / 127.5 - 1.0),
|
54 |
+
"prompt_ids": self.prompt_ids,
|
55 |
+
}
|
56 |
+
|
57 |
+
return example
|
tuneavideo/models/attention.py
ADDED
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from torch import nn
|
9 |
+
|
10 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
11 |
+
from diffusers.modeling_utils import ModelMixin
|
12 |
+
from diffusers.utils import BaseOutput
|
13 |
+
from diffusers.utils.import_utils import is_xformers_available
|
14 |
+
from diffusers.models.attention import CrossAttention, FeedForward, AdaLayerNorm
|
15 |
+
|
16 |
+
from einops import rearrange, repeat
|
17 |
+
|
18 |
+
|
19 |
+
@dataclass
|
20 |
+
class Transformer3DModelOutput(BaseOutput):
|
21 |
+
sample: torch.FloatTensor
|
22 |
+
|
23 |
+
|
24 |
+
if is_xformers_available():
|
25 |
+
import xformers
|
26 |
+
import xformers.ops
|
27 |
+
else:
|
28 |
+
xformers = None
|
29 |
+
|
30 |
+
|
31 |
+
class Transformer3DModel(ModelMixin, ConfigMixin):
|
32 |
+
@register_to_config
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
num_attention_heads: int = 16,
|
36 |
+
attention_head_dim: int = 88,
|
37 |
+
in_channels: Optional[int] = None,
|
38 |
+
num_layers: int = 1,
|
39 |
+
dropout: float = 0.0,
|
40 |
+
norm_num_groups: int = 32,
|
41 |
+
cross_attention_dim: Optional[int] = None,
|
42 |
+
attention_bias: bool = False,
|
43 |
+
activation_fn: str = "geglu",
|
44 |
+
num_embeds_ada_norm: Optional[int] = None,
|
45 |
+
use_linear_projection: bool = False,
|
46 |
+
only_cross_attention: bool = False,
|
47 |
+
upcast_attention: bool = False,
|
48 |
+
):
|
49 |
+
super().__init__()
|
50 |
+
self.use_linear_projection = use_linear_projection
|
51 |
+
self.num_attention_heads = num_attention_heads
|
52 |
+
self.attention_head_dim = attention_head_dim
|
53 |
+
inner_dim = num_attention_heads * attention_head_dim
|
54 |
+
|
55 |
+
# Define input layers
|
56 |
+
self.in_channels = in_channels
|
57 |
+
|
58 |
+
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True)
|
59 |
+
if use_linear_projection:
|
60 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
61 |
+
else:
|
62 |
+
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0)
|
63 |
+
|
64 |
+
# Define transformers blocks
|
65 |
+
self.transformer_blocks = nn.ModuleList(
|
66 |
+
[
|
67 |
+
BasicTransformerBlock(
|
68 |
+
inner_dim,
|
69 |
+
num_attention_heads,
|
70 |
+
attention_head_dim,
|
71 |
+
dropout=dropout,
|
72 |
+
cross_attention_dim=cross_attention_dim,
|
73 |
+
activation_fn=activation_fn,
|
74 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
75 |
+
attention_bias=attention_bias,
|
76 |
+
only_cross_attention=only_cross_attention,
|
77 |
+
upcast_attention=upcast_attention,
|
78 |
+
)
|
79 |
+
for d in range(num_layers)
|
80 |
+
]
|
81 |
+
)
|
82 |
+
|
83 |
+
# 4. Define output layers
|
84 |
+
if use_linear_projection:
|
85 |
+
self.proj_out = nn.Linear(in_channels, inner_dim)
|
86 |
+
else:
|
87 |
+
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
|
88 |
+
|
89 |
+
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True):
|
90 |
+
# Input
|
91 |
+
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
92 |
+
video_length = hidden_states.shape[2]
|
93 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
94 |
+
encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length)
|
95 |
+
|
96 |
+
batch, channel, height, weight = hidden_states.shape
|
97 |
+
residual = hidden_states
|
98 |
+
|
99 |
+
hidden_states = self.norm(hidden_states)
|
100 |
+
if not self.use_linear_projection:
|
101 |
+
hidden_states = self.proj_in(hidden_states)
|
102 |
+
inner_dim = hidden_states.shape[1]
|
103 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
104 |
+
else:
|
105 |
+
inner_dim = hidden_states.shape[1]
|
106 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim)
|
107 |
+
hidden_states = self.proj_in(hidden_states)
|
108 |
+
|
109 |
+
# Blocks
|
110 |
+
for block in self.transformer_blocks:
|
111 |
+
hidden_states = block(
|
112 |
+
hidden_states,
|
113 |
+
encoder_hidden_states=encoder_hidden_states,
|
114 |
+
timestep=timestep,
|
115 |
+
video_length=video_length
|
116 |
+
)
|
117 |
+
|
118 |
+
# Output
|
119 |
+
if not self.use_linear_projection:
|
120 |
+
hidden_states = (
|
121 |
+
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
122 |
+
)
|
123 |
+
hidden_states = self.proj_out(hidden_states)
|
124 |
+
else:
|
125 |
+
hidden_states = self.proj_out(hidden_states)
|
126 |
+
hidden_states = (
|
127 |
+
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous()
|
128 |
+
)
|
129 |
+
|
130 |
+
output = hidden_states + residual
|
131 |
+
|
132 |
+
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
133 |
+
if not return_dict:
|
134 |
+
return (output,)
|
135 |
+
|
136 |
+
return Transformer3DModelOutput(sample=output)
|
137 |
+
|
138 |
+
|
139 |
+
class BasicTransformerBlock(nn.Module):
|
140 |
+
def __init__(
|
141 |
+
self,
|
142 |
+
dim: int,
|
143 |
+
num_attention_heads: int,
|
144 |
+
attention_head_dim: int,
|
145 |
+
dropout=0.0,
|
146 |
+
cross_attention_dim: Optional[int] = None,
|
147 |
+
activation_fn: str = "geglu",
|
148 |
+
num_embeds_ada_norm: Optional[int] = None,
|
149 |
+
attention_bias: bool = False,
|
150 |
+
only_cross_attention: bool = False,
|
151 |
+
upcast_attention: bool = False,
|
152 |
+
):
|
153 |
+
super().__init__()
|
154 |
+
self.only_cross_attention = only_cross_attention
|
155 |
+
self.use_ada_layer_norm = num_embeds_ada_norm is not None
|
156 |
+
|
157 |
+
# SC-Attn
|
158 |
+
self.attn1 = FrameAttention(
|
159 |
+
# self.attn1 = SparseCausalAttention(
|
160 |
+
query_dim=dim,
|
161 |
+
heads=num_attention_heads,
|
162 |
+
dim_head=attention_head_dim,
|
163 |
+
dropout=dropout,
|
164 |
+
bias=attention_bias,
|
165 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
166 |
+
upcast_attention=upcast_attention,
|
167 |
+
)
|
168 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
169 |
+
|
170 |
+
# Cross-Attn
|
171 |
+
if cross_attention_dim is not None:
|
172 |
+
self.attn2 = CrossAttention(
|
173 |
+
query_dim=dim,
|
174 |
+
cross_attention_dim=cross_attention_dim,
|
175 |
+
heads=num_attention_heads,
|
176 |
+
dim_head=attention_head_dim,
|
177 |
+
dropout=dropout,
|
178 |
+
bias=attention_bias,
|
179 |
+
upcast_attention=upcast_attention,
|
180 |
+
)
|
181 |
+
else:
|
182 |
+
self.attn2 = None
|
183 |
+
|
184 |
+
if cross_attention_dim is not None:
|
185 |
+
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
186 |
+
else:
|
187 |
+
self.norm2 = None
|
188 |
+
|
189 |
+
# Feed-forward
|
190 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
191 |
+
self.norm3 = nn.LayerNorm(dim)
|
192 |
+
|
193 |
+
# Temp-Attn
|
194 |
+
self.attn_temp = CrossAttention(
|
195 |
+
query_dim=dim,
|
196 |
+
heads=num_attention_heads,
|
197 |
+
dim_head=attention_head_dim,
|
198 |
+
dropout=dropout,
|
199 |
+
bias=attention_bias,
|
200 |
+
upcast_attention=upcast_attention,
|
201 |
+
)
|
202 |
+
nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
|
203 |
+
self.norm_temp = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim)
|
204 |
+
|
205 |
+
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool):
|
206 |
+
if not is_xformers_available():
|
207 |
+
print("Here is how to install it")
|
208 |
+
raise ModuleNotFoundError(
|
209 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
210 |
+
" xformers",
|
211 |
+
name="xformers",
|
212 |
+
)
|
213 |
+
elif not torch.cuda.is_available():
|
214 |
+
raise ValueError(
|
215 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only"
|
216 |
+
" available for GPU "
|
217 |
+
)
|
218 |
+
else:
|
219 |
+
try:
|
220 |
+
# Make sure we can run the memory efficient attention
|
221 |
+
_ = xformers.ops.memory_efficient_attention(
|
222 |
+
torch.randn((1, 2, 40), device="cuda"),
|
223 |
+
torch.randn((1, 2, 40), device="cuda"),
|
224 |
+
torch.randn((1, 2, 40), device="cuda"),
|
225 |
+
)
|
226 |
+
except Exception as e:
|
227 |
+
raise e
|
228 |
+
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
229 |
+
if self.attn2 is not None:
|
230 |
+
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
231 |
+
# self.attn_temp._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers
|
232 |
+
|
233 |
+
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None):
|
234 |
+
# SparseCausal-Attention
|
235 |
+
norm_hidden_states = (
|
236 |
+
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states)
|
237 |
+
)
|
238 |
+
|
239 |
+
if self.only_cross_attention:
|
240 |
+
hidden_states = (
|
241 |
+
self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states
|
242 |
+
)
|
243 |
+
else:
|
244 |
+
hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states
|
245 |
+
|
246 |
+
if self.attn2 is not None:
|
247 |
+
# Cross-Attention
|
248 |
+
norm_hidden_states = (
|
249 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states)
|
250 |
+
)
|
251 |
+
hidden_states = (
|
252 |
+
self.attn2(
|
253 |
+
norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
254 |
+
)
|
255 |
+
+ hidden_states
|
256 |
+
)
|
257 |
+
|
258 |
+
# Feed-forward
|
259 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
260 |
+
|
261 |
+
# Temporal-Attention
|
262 |
+
d = hidden_states.shape[1]
|
263 |
+
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length)
|
264 |
+
norm_hidden_states = (
|
265 |
+
self.norm_temp(hidden_states, timestep) if self.use_ada_layer_norm else self.norm_temp(hidden_states)
|
266 |
+
)
|
267 |
+
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
|
268 |
+
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
|
269 |
+
|
270 |
+
return hidden_states
|
271 |
+
|
272 |
+
|
273 |
+
class SparseCausalAttention(CrossAttention):
|
274 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
|
275 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
276 |
+
|
277 |
+
encoder_hidden_states = encoder_hidden_states
|
278 |
+
|
279 |
+
if self.group_norm is not None:
|
280 |
+
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
281 |
+
|
282 |
+
query = self.to_q(hidden_states)
|
283 |
+
dim = query.shape[-1]
|
284 |
+
query = self.reshape_heads_to_batch_dim(query)
|
285 |
+
|
286 |
+
if self.added_kv_proj_dim is not None:
|
287 |
+
raise NotImplementedError
|
288 |
+
|
289 |
+
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
|
290 |
+
key = self.to_k(encoder_hidden_states)
|
291 |
+
value = self.to_v(encoder_hidden_states)
|
292 |
+
|
293 |
+
former_frame_index = torch.arange(video_length) - 1
|
294 |
+
former_frame_index[0] = 0
|
295 |
+
|
296 |
+
key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
|
297 |
+
key = torch.cat([key[:, [0] * video_length], key[:, former_frame_index]], dim=2)
|
298 |
+
key = rearrange(key, "b f d c -> (b f) d c")
|
299 |
+
|
300 |
+
value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
|
301 |
+
value = torch.cat([value[:, [0] * video_length], value[:, former_frame_index]], dim=2)
|
302 |
+
value = rearrange(value, "b f d c -> (b f) d c")
|
303 |
+
|
304 |
+
key = self.reshape_heads_to_batch_dim(key)
|
305 |
+
value = self.reshape_heads_to_batch_dim(value)
|
306 |
+
|
307 |
+
if attention_mask is not None:
|
308 |
+
if attention_mask.shape[-1] != query.shape[1]:
|
309 |
+
target_length = query.shape[1]
|
310 |
+
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
|
311 |
+
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
|
312 |
+
|
313 |
+
# attention, what we cannot get enough of
|
314 |
+
if self._use_memory_efficient_attention_xformers:
|
315 |
+
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
|
316 |
+
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
|
317 |
+
hidden_states = hidden_states.to(query.dtype)
|
318 |
+
else:
|
319 |
+
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
|
320 |
+
hidden_states = self._attention(query, key, value, attention_mask)
|
321 |
+
else:
|
322 |
+
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
|
323 |
+
|
324 |
+
# linear proj
|
325 |
+
hidden_states = self.to_out[0](hidden_states)
|
326 |
+
|
327 |
+
# dropout
|
328 |
+
hidden_states = self.to_out[1](hidden_states)
|
329 |
+
return hidden_states
|
330 |
+
|
331 |
+
|
332 |
+
class FrameAttention(CrossAttention):
|
333 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None):
|
334 |
+
batch_size, sequence_length, _ = hidden_states.shape
|
335 |
+
|
336 |
+
encoder_hidden_states = encoder_hidden_states
|
337 |
+
|
338 |
+
if self.group_norm is not None:
|
339 |
+
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
340 |
+
|
341 |
+
query = self.to_q(hidden_states)
|
342 |
+
dim = query.shape[-1]
|
343 |
+
query = self.reshape_heads_to_batch_dim(query)
|
344 |
+
|
345 |
+
if self.added_kv_proj_dim is not None:
|
346 |
+
raise NotImplementedError
|
347 |
+
|
348 |
+
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states
|
349 |
+
key = self.to_k(encoder_hidden_states)
|
350 |
+
value = self.to_v(encoder_hidden_states)
|
351 |
+
|
352 |
+
former_frame_index = torch.arange(video_length) - 1
|
353 |
+
former_frame_index[0] = 0
|
354 |
+
|
355 |
+
key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
|
356 |
+
key = key[:, [0] * video_length]
|
357 |
+
key = rearrange(key, "b f d c -> (b f) d c")
|
358 |
+
|
359 |
+
value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
|
360 |
+
value = value[:, [0] * video_length]
|
361 |
+
value = rearrange(value, "b f d c -> (b f) d c")
|
362 |
+
|
363 |
+
key = self.reshape_heads_to_batch_dim(key)
|
364 |
+
value = self.reshape_heads_to_batch_dim(value)
|
365 |
+
|
366 |
+
if attention_mask is not None:
|
367 |
+
if attention_mask.shape[-1] != query.shape[1]:
|
368 |
+
target_length = query.shape[1]
|
369 |
+
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0)
|
370 |
+
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0)
|
371 |
+
|
372 |
+
# attention, what we cannot get enough of
|
373 |
+
if self._use_memory_efficient_attention_xformers:
|
374 |
+
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask)
|
375 |
+
# Some versions of xformers return output in fp32, cast it back to the dtype of the input
|
376 |
+
hidden_states = hidden_states.to(query.dtype)
|
377 |
+
else:
|
378 |
+
if self._slice_size is None or query.shape[0] // self._slice_size == 1:
|
379 |
+
hidden_states = self._attention(query, key, value, attention_mask)
|
380 |
+
else:
|
381 |
+
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask)
|
382 |
+
|
383 |
+
# linear proj
|
384 |
+
hidden_states = self.to_out[0](hidden_states)
|
385 |
+
|
386 |
+
# dropout
|
387 |
+
hidden_states = self.to_out[1](hidden_states)
|
388 |
+
return hidden_states
|
tuneavideo/models/resnet.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
from einops import rearrange
|
8 |
+
|
9 |
+
|
10 |
+
class InflatedConv3d(nn.Conv2d):
|
11 |
+
def forward(self, x):
|
12 |
+
video_length = x.shape[2]
|
13 |
+
|
14 |
+
x = rearrange(x, "b c f h w -> (b f) c h w")
|
15 |
+
x = super().forward(x)
|
16 |
+
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
17 |
+
|
18 |
+
return x
|
19 |
+
|
20 |
+
|
21 |
+
class Upsample3D(nn.Module):
|
22 |
+
def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
|
23 |
+
super().__init__()
|
24 |
+
self.channels = channels
|
25 |
+
self.out_channels = out_channels or channels
|
26 |
+
self.use_conv = use_conv
|
27 |
+
self.use_conv_transpose = use_conv_transpose
|
28 |
+
self.name = name
|
29 |
+
|
30 |
+
conv = None
|
31 |
+
if use_conv_transpose:
|
32 |
+
raise NotImplementedError
|
33 |
+
elif use_conv:
|
34 |
+
conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
|
35 |
+
|
36 |
+
if name == "conv":
|
37 |
+
self.conv = conv
|
38 |
+
else:
|
39 |
+
self.Conv2d_0 = conv
|
40 |
+
|
41 |
+
def forward(self, hidden_states, output_size=None):
|
42 |
+
assert hidden_states.shape[1] == self.channels
|
43 |
+
|
44 |
+
if self.use_conv_transpose:
|
45 |
+
raise NotImplementedError
|
46 |
+
|
47 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
48 |
+
dtype = hidden_states.dtype
|
49 |
+
if dtype == torch.bfloat16:
|
50 |
+
hidden_states = hidden_states.to(torch.float32)
|
51 |
+
|
52 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
53 |
+
if hidden_states.shape[0] >= 64:
|
54 |
+
hidden_states = hidden_states.contiguous()
|
55 |
+
|
56 |
+
# if `output_size` is passed we force the interpolation output
|
57 |
+
# size and do not make use of `scale_factor=2`
|
58 |
+
if output_size is None:
|
59 |
+
hidden_states = F.interpolate(hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest")
|
60 |
+
else:
|
61 |
+
hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
|
62 |
+
|
63 |
+
# If the input is bfloat16, we cast back to bfloat16
|
64 |
+
if dtype == torch.bfloat16:
|
65 |
+
hidden_states = hidden_states.to(dtype)
|
66 |
+
|
67 |
+
if self.use_conv:
|
68 |
+
if self.name == "conv":
|
69 |
+
hidden_states = self.conv(hidden_states)
|
70 |
+
else:
|
71 |
+
hidden_states = self.Conv2d_0(hidden_states)
|
72 |
+
|
73 |
+
return hidden_states
|
74 |
+
|
75 |
+
|
76 |
+
class Downsample3D(nn.Module):
|
77 |
+
def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
|
78 |
+
super().__init__()
|
79 |
+
self.channels = channels
|
80 |
+
self.out_channels = out_channels or channels
|
81 |
+
self.use_conv = use_conv
|
82 |
+
self.padding = padding
|
83 |
+
stride = 2
|
84 |
+
self.name = name
|
85 |
+
|
86 |
+
if use_conv:
|
87 |
+
conv = InflatedConv3d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
|
88 |
+
else:
|
89 |
+
raise NotImplementedError
|
90 |
+
|
91 |
+
if name == "conv":
|
92 |
+
self.Conv2d_0 = conv
|
93 |
+
self.conv = conv
|
94 |
+
elif name == "Conv2d_0":
|
95 |
+
self.conv = conv
|
96 |
+
else:
|
97 |
+
self.conv = conv
|
98 |
+
|
99 |
+
def forward(self, hidden_states):
|
100 |
+
assert hidden_states.shape[1] == self.channels
|
101 |
+
if self.use_conv and self.padding == 0:
|
102 |
+
raise NotImplementedError
|
103 |
+
|
104 |
+
assert hidden_states.shape[1] == self.channels
|
105 |
+
hidden_states = self.conv(hidden_states)
|
106 |
+
|
107 |
+
return hidden_states
|
108 |
+
|
109 |
+
|
110 |
+
class ResnetBlock3D(nn.Module):
|
111 |
+
def __init__(
|
112 |
+
self,
|
113 |
+
*,
|
114 |
+
in_channels,
|
115 |
+
out_channels=None,
|
116 |
+
conv_shortcut=False,
|
117 |
+
dropout=0.0,
|
118 |
+
temb_channels=512,
|
119 |
+
groups=32,
|
120 |
+
groups_out=None,
|
121 |
+
pre_norm=True,
|
122 |
+
eps=1e-6,
|
123 |
+
non_linearity="swish",
|
124 |
+
time_embedding_norm="default",
|
125 |
+
output_scale_factor=1.0,
|
126 |
+
use_in_shortcut=None,
|
127 |
+
):
|
128 |
+
super().__init__()
|
129 |
+
self.pre_norm = pre_norm
|
130 |
+
self.pre_norm = True
|
131 |
+
self.in_channels = in_channels
|
132 |
+
out_channels = in_channels if out_channels is None else out_channels
|
133 |
+
self.out_channels = out_channels
|
134 |
+
self.use_conv_shortcut = conv_shortcut
|
135 |
+
self.time_embedding_norm = time_embedding_norm
|
136 |
+
self.output_scale_factor = output_scale_factor
|
137 |
+
|
138 |
+
if groups_out is None:
|
139 |
+
groups_out = groups
|
140 |
+
|
141 |
+
self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
|
142 |
+
|
143 |
+
self.conv1 = InflatedConv3d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
144 |
+
|
145 |
+
if temb_channels is not None:
|
146 |
+
if self.time_embedding_norm == "default":
|
147 |
+
time_emb_proj_out_channels = out_channels
|
148 |
+
elif self.time_embedding_norm == "scale_shift":
|
149 |
+
time_emb_proj_out_channels = out_channels * 2
|
150 |
+
else:
|
151 |
+
raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
|
152 |
+
|
153 |
+
self.time_emb_proj = torch.nn.Linear(temb_channels, time_emb_proj_out_channels)
|
154 |
+
else:
|
155 |
+
self.time_emb_proj = None
|
156 |
+
|
157 |
+
self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)
|
158 |
+
self.dropout = torch.nn.Dropout(dropout)
|
159 |
+
self.conv2 = InflatedConv3d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
160 |
+
|
161 |
+
if non_linearity == "swish":
|
162 |
+
self.nonlinearity = lambda x: F.silu(x)
|
163 |
+
elif non_linearity == "mish":
|
164 |
+
self.nonlinearity = Mish()
|
165 |
+
elif non_linearity == "silu":
|
166 |
+
self.nonlinearity = nn.SiLU()
|
167 |
+
|
168 |
+
self.use_in_shortcut = self.in_channels != self.out_channels if use_in_shortcut is None else use_in_shortcut
|
169 |
+
|
170 |
+
self.conv_shortcut = None
|
171 |
+
if self.use_in_shortcut:
|
172 |
+
self.conv_shortcut = InflatedConv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
|
173 |
+
|
174 |
+
def forward(self, input_tensor, temb):
|
175 |
+
hidden_states = input_tensor
|
176 |
+
|
177 |
+
hidden_states = self.norm1(hidden_states)
|
178 |
+
hidden_states = self.nonlinearity(hidden_states)
|
179 |
+
|
180 |
+
hidden_states = self.conv1(hidden_states)
|
181 |
+
|
182 |
+
if temb is not None:
|
183 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
|
184 |
+
|
185 |
+
if temb is not None and self.time_embedding_norm == "default":
|
186 |
+
hidden_states = hidden_states + temb
|
187 |
+
|
188 |
+
hidden_states = self.norm2(hidden_states)
|
189 |
+
|
190 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
191 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
192 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
193 |
+
|
194 |
+
hidden_states = self.nonlinearity(hidden_states)
|
195 |
+
|
196 |
+
hidden_states = self.dropout(hidden_states)
|
197 |
+
hidden_states = self.conv2(hidden_states)
|
198 |
+
|
199 |
+
if self.conv_shortcut is not None:
|
200 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
201 |
+
|
202 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
203 |
+
|
204 |
+
return output_tensor
|
205 |
+
|
206 |
+
|
207 |
+
class Mish(torch.nn.Module):
|
208 |
+
def forward(self, hidden_states):
|
209 |
+
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
|
tuneavideo/models/unet.py
ADDED
@@ -0,0 +1,450 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
|
2 |
+
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import List, Optional, Tuple, Union
|
5 |
+
|
6 |
+
import os
|
7 |
+
import json
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
|
13 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
14 |
+
from diffusers.modeling_utils import ModelMixin
|
15 |
+
from diffusers.utils import BaseOutput, logging
|
16 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
17 |
+
from .unet_blocks import (
|
18 |
+
CrossAttnDownBlock3D,
|
19 |
+
CrossAttnUpBlock3D,
|
20 |
+
DownBlock3D,
|
21 |
+
UNetMidBlock3DCrossAttn,
|
22 |
+
UpBlock3D,
|
23 |
+
get_down_block,
|
24 |
+
get_up_block,
|
25 |
+
)
|
26 |
+
from .resnet import InflatedConv3d
|
27 |
+
|
28 |
+
|
29 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class UNet3DConditionOutput(BaseOutput):
|
34 |
+
sample: torch.FloatTensor
|
35 |
+
|
36 |
+
|
37 |
+
class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
38 |
+
_supports_gradient_checkpointing = True
|
39 |
+
|
40 |
+
@register_to_config
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
sample_size: Optional[int] = None,
|
44 |
+
in_channels: int = 4,
|
45 |
+
out_channels: int = 4,
|
46 |
+
center_input_sample: bool = False,
|
47 |
+
flip_sin_to_cos: bool = True,
|
48 |
+
freq_shift: int = 0,
|
49 |
+
down_block_types: Tuple[str] = (
|
50 |
+
"CrossAttnDownBlock3D",
|
51 |
+
"CrossAttnDownBlock3D",
|
52 |
+
"CrossAttnDownBlock3D",
|
53 |
+
"DownBlock3D",
|
54 |
+
),
|
55 |
+
mid_block_type: str = "UNetMidBlock3DCrossAttn",
|
56 |
+
up_block_types: Tuple[str] = (
|
57 |
+
"UpBlock3D",
|
58 |
+
"CrossAttnUpBlock3D",
|
59 |
+
"CrossAttnUpBlock3D",
|
60 |
+
"CrossAttnUpBlock3D"
|
61 |
+
),
|
62 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
63 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
64 |
+
layers_per_block: int = 2,
|
65 |
+
downsample_padding: int = 1,
|
66 |
+
mid_block_scale_factor: float = 1,
|
67 |
+
act_fn: str = "silu",
|
68 |
+
norm_num_groups: int = 32,
|
69 |
+
norm_eps: float = 1e-5,
|
70 |
+
cross_attention_dim: int = 1280,
|
71 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
72 |
+
dual_cross_attention: bool = False,
|
73 |
+
use_linear_projection: bool = False,
|
74 |
+
class_embed_type: Optional[str] = None,
|
75 |
+
num_class_embeds: Optional[int] = None,
|
76 |
+
upcast_attention: bool = False,
|
77 |
+
resnet_time_scale_shift: str = "default",
|
78 |
+
):
|
79 |
+
super().__init__()
|
80 |
+
|
81 |
+
self.sample_size = sample_size
|
82 |
+
time_embed_dim = block_out_channels[0] * 4
|
83 |
+
|
84 |
+
# input
|
85 |
+
self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
|
86 |
+
|
87 |
+
# time
|
88 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
89 |
+
timestep_input_dim = block_out_channels[0]
|
90 |
+
|
91 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
92 |
+
|
93 |
+
# class embedding
|
94 |
+
if class_embed_type is None and num_class_embeds is not None:
|
95 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
96 |
+
elif class_embed_type == "timestep":
|
97 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
98 |
+
elif class_embed_type == "identity":
|
99 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
100 |
+
else:
|
101 |
+
self.class_embedding = None
|
102 |
+
|
103 |
+
self.down_blocks = nn.ModuleList([])
|
104 |
+
self.mid_block = None
|
105 |
+
self.up_blocks = nn.ModuleList([])
|
106 |
+
|
107 |
+
if isinstance(only_cross_attention, bool):
|
108 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
109 |
+
|
110 |
+
if isinstance(attention_head_dim, int):
|
111 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
112 |
+
|
113 |
+
# down
|
114 |
+
output_channel = block_out_channels[0]
|
115 |
+
for i, down_block_type in enumerate(down_block_types):
|
116 |
+
input_channel = output_channel
|
117 |
+
output_channel = block_out_channels[i]
|
118 |
+
is_final_block = i == len(block_out_channels) - 1
|
119 |
+
|
120 |
+
down_block = get_down_block(
|
121 |
+
down_block_type,
|
122 |
+
num_layers=layers_per_block,
|
123 |
+
in_channels=input_channel,
|
124 |
+
out_channels=output_channel,
|
125 |
+
temb_channels=time_embed_dim,
|
126 |
+
add_downsample=not is_final_block,
|
127 |
+
resnet_eps=norm_eps,
|
128 |
+
resnet_act_fn=act_fn,
|
129 |
+
resnet_groups=norm_num_groups,
|
130 |
+
cross_attention_dim=cross_attention_dim,
|
131 |
+
attn_num_head_channels=attention_head_dim[i],
|
132 |
+
downsample_padding=downsample_padding,
|
133 |
+
dual_cross_attention=dual_cross_attention,
|
134 |
+
use_linear_projection=use_linear_projection,
|
135 |
+
only_cross_attention=only_cross_attention[i],
|
136 |
+
upcast_attention=upcast_attention,
|
137 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
138 |
+
)
|
139 |
+
self.down_blocks.append(down_block)
|
140 |
+
|
141 |
+
# mid
|
142 |
+
if mid_block_type == "UNetMidBlock3DCrossAttn":
|
143 |
+
self.mid_block = UNetMidBlock3DCrossAttn(
|
144 |
+
in_channels=block_out_channels[-1],
|
145 |
+
temb_channels=time_embed_dim,
|
146 |
+
resnet_eps=norm_eps,
|
147 |
+
resnet_act_fn=act_fn,
|
148 |
+
output_scale_factor=mid_block_scale_factor,
|
149 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
150 |
+
cross_attention_dim=cross_attention_dim,
|
151 |
+
attn_num_head_channels=attention_head_dim[-1],
|
152 |
+
resnet_groups=norm_num_groups,
|
153 |
+
dual_cross_attention=dual_cross_attention,
|
154 |
+
use_linear_projection=use_linear_projection,
|
155 |
+
upcast_attention=upcast_attention,
|
156 |
+
)
|
157 |
+
else:
|
158 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
159 |
+
|
160 |
+
# count how many layers upsample the videos
|
161 |
+
self.num_upsamplers = 0
|
162 |
+
|
163 |
+
# up
|
164 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
165 |
+
reversed_attention_head_dim = list(reversed(attention_head_dim))
|
166 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
167 |
+
output_channel = reversed_block_out_channels[0]
|
168 |
+
for i, up_block_type in enumerate(up_block_types):
|
169 |
+
is_final_block = i == len(block_out_channels) - 1
|
170 |
+
|
171 |
+
prev_output_channel = output_channel
|
172 |
+
output_channel = reversed_block_out_channels[i]
|
173 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
174 |
+
|
175 |
+
# add upsample block for all BUT final layer
|
176 |
+
if not is_final_block:
|
177 |
+
add_upsample = True
|
178 |
+
self.num_upsamplers += 1
|
179 |
+
else:
|
180 |
+
add_upsample = False
|
181 |
+
|
182 |
+
up_block = get_up_block(
|
183 |
+
up_block_type,
|
184 |
+
num_layers=layers_per_block + 1,
|
185 |
+
in_channels=input_channel,
|
186 |
+
out_channels=output_channel,
|
187 |
+
prev_output_channel=prev_output_channel,
|
188 |
+
temb_channels=time_embed_dim,
|
189 |
+
add_upsample=add_upsample,
|
190 |
+
resnet_eps=norm_eps,
|
191 |
+
resnet_act_fn=act_fn,
|
192 |
+
resnet_groups=norm_num_groups,
|
193 |
+
cross_attention_dim=cross_attention_dim,
|
194 |
+
attn_num_head_channels=reversed_attention_head_dim[i],
|
195 |
+
dual_cross_attention=dual_cross_attention,
|
196 |
+
use_linear_projection=use_linear_projection,
|
197 |
+
only_cross_attention=only_cross_attention[i],
|
198 |
+
upcast_attention=upcast_attention,
|
199 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
200 |
+
)
|
201 |
+
self.up_blocks.append(up_block)
|
202 |
+
prev_output_channel = output_channel
|
203 |
+
|
204 |
+
# out
|
205 |
+
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
|
206 |
+
self.conv_act = nn.SiLU()
|
207 |
+
self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
|
208 |
+
|
209 |
+
def set_attention_slice(self, slice_size):
|
210 |
+
r"""
|
211 |
+
Enable sliced attention computation.
|
212 |
+
|
213 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
214 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
215 |
+
|
216 |
+
Args:
|
217 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
218 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
219 |
+
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
|
220 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
221 |
+
must be a multiple of `slice_size`.
|
222 |
+
"""
|
223 |
+
sliceable_head_dims = []
|
224 |
+
|
225 |
+
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
|
226 |
+
if hasattr(module, "set_attention_slice"):
|
227 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
228 |
+
|
229 |
+
for child in module.children():
|
230 |
+
fn_recursive_retrieve_slicable_dims(child)
|
231 |
+
|
232 |
+
# retrieve number of attention layers
|
233 |
+
for module in self.children():
|
234 |
+
fn_recursive_retrieve_slicable_dims(module)
|
235 |
+
|
236 |
+
num_slicable_layers = len(sliceable_head_dims)
|
237 |
+
|
238 |
+
if slice_size == "auto":
|
239 |
+
# half the attention head size is usually a good trade-off between
|
240 |
+
# speed and memory
|
241 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
242 |
+
elif slice_size == "max":
|
243 |
+
# make smallest slice possible
|
244 |
+
slice_size = num_slicable_layers * [1]
|
245 |
+
|
246 |
+
slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
247 |
+
|
248 |
+
if len(slice_size) != len(sliceable_head_dims):
|
249 |
+
raise ValueError(
|
250 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
251 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
252 |
+
)
|
253 |
+
|
254 |
+
for i in range(len(slice_size)):
|
255 |
+
size = slice_size[i]
|
256 |
+
dim = sliceable_head_dims[i]
|
257 |
+
if size is not None and size > dim:
|
258 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
259 |
+
|
260 |
+
# Recursively walk through all the children.
|
261 |
+
# Any children which exposes the set_attention_slice method
|
262 |
+
# gets the message
|
263 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
264 |
+
if hasattr(module, "set_attention_slice"):
|
265 |
+
module.set_attention_slice(slice_size.pop())
|
266 |
+
|
267 |
+
for child in module.children():
|
268 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
269 |
+
|
270 |
+
reversed_slice_size = list(reversed(slice_size))
|
271 |
+
for module in self.children():
|
272 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
273 |
+
|
274 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
275 |
+
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
|
276 |
+
module.gradient_checkpointing = value
|
277 |
+
|
278 |
+
def forward(
|
279 |
+
self,
|
280 |
+
sample: torch.FloatTensor,
|
281 |
+
timestep: Union[torch.Tensor, float, int],
|
282 |
+
encoder_hidden_states: torch.Tensor,
|
283 |
+
class_labels: Optional[torch.Tensor] = None,
|
284 |
+
attention_mask: Optional[torch.Tensor] = None,
|
285 |
+
return_dict: bool = True,
|
286 |
+
) -> Union[UNet3DConditionOutput, Tuple]:
|
287 |
+
r"""
|
288 |
+
Args:
|
289 |
+
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
|
290 |
+
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
291 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
|
292 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
293 |
+
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
294 |
+
|
295 |
+
Returns:
|
296 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
297 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
298 |
+
returning a tuple, the first element is the sample tensor.
|
299 |
+
"""
|
300 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
301 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
302 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
303 |
+
# on the fly if necessary.
|
304 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
305 |
+
|
306 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
307 |
+
forward_upsample_size = False
|
308 |
+
upsample_size = None
|
309 |
+
|
310 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
311 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
312 |
+
forward_upsample_size = True
|
313 |
+
|
314 |
+
# prepare attention_mask
|
315 |
+
if attention_mask is not None:
|
316 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
317 |
+
attention_mask = attention_mask.unsqueeze(1)
|
318 |
+
|
319 |
+
# center input if necessary
|
320 |
+
if self.config.center_input_sample:
|
321 |
+
sample = 2 * sample - 1.0
|
322 |
+
|
323 |
+
# time
|
324 |
+
timesteps = timestep
|
325 |
+
if not torch.is_tensor(timesteps):
|
326 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
327 |
+
is_mps = sample.device.type == "mps"
|
328 |
+
if isinstance(timestep, float):
|
329 |
+
dtype = torch.float32 if is_mps else torch.float64
|
330 |
+
else:
|
331 |
+
dtype = torch.int32 if is_mps else torch.int64
|
332 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
333 |
+
elif len(timesteps.shape) == 0:
|
334 |
+
timesteps = timesteps[None].to(sample.device)
|
335 |
+
|
336 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
337 |
+
timesteps = timesteps.expand(sample.shape[0])
|
338 |
+
|
339 |
+
t_emb = self.time_proj(timesteps)
|
340 |
+
|
341 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
342 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
343 |
+
# there might be better ways to encapsulate this.
|
344 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
345 |
+
emb = self.time_embedding(t_emb)
|
346 |
+
|
347 |
+
if self.class_embedding is not None:
|
348 |
+
if class_labels is None:
|
349 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
350 |
+
|
351 |
+
if self.config.class_embed_type == "timestep":
|
352 |
+
class_labels = self.time_proj(class_labels)
|
353 |
+
|
354 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
355 |
+
emb = emb + class_emb
|
356 |
+
|
357 |
+
# pre-process
|
358 |
+
sample = self.conv_in(sample)
|
359 |
+
|
360 |
+
# down
|
361 |
+
down_block_res_samples = (sample,)
|
362 |
+
for downsample_block in self.down_blocks:
|
363 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
364 |
+
sample, res_samples = downsample_block(
|
365 |
+
hidden_states=sample,
|
366 |
+
temb=emb,
|
367 |
+
encoder_hidden_states=encoder_hidden_states,
|
368 |
+
attention_mask=attention_mask,
|
369 |
+
)
|
370 |
+
else:
|
371 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
372 |
+
|
373 |
+
down_block_res_samples += res_samples
|
374 |
+
|
375 |
+
# mid
|
376 |
+
sample = self.mid_block(
|
377 |
+
sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
|
378 |
+
)
|
379 |
+
|
380 |
+
# up
|
381 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
382 |
+
is_final_block = i == len(self.up_blocks) - 1
|
383 |
+
|
384 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
385 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
386 |
+
|
387 |
+
# if we have not reached the final block and need to forward the
|
388 |
+
# upsample size, we do it here
|
389 |
+
if not is_final_block and forward_upsample_size:
|
390 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
391 |
+
|
392 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
393 |
+
sample = upsample_block(
|
394 |
+
hidden_states=sample,
|
395 |
+
temb=emb,
|
396 |
+
res_hidden_states_tuple=res_samples,
|
397 |
+
encoder_hidden_states=encoder_hidden_states,
|
398 |
+
upsample_size=upsample_size,
|
399 |
+
attention_mask=attention_mask,
|
400 |
+
)
|
401 |
+
else:
|
402 |
+
sample = upsample_block(
|
403 |
+
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
|
404 |
+
)
|
405 |
+
# post-process
|
406 |
+
sample = self.conv_norm_out(sample)
|
407 |
+
sample = self.conv_act(sample)
|
408 |
+
sample = self.conv_out(sample)
|
409 |
+
|
410 |
+
if not return_dict:
|
411 |
+
return (sample,)
|
412 |
+
|
413 |
+
return UNet3DConditionOutput(sample=sample)
|
414 |
+
|
415 |
+
@classmethod
|
416 |
+
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None):
|
417 |
+
if subfolder is not None:
|
418 |
+
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
|
419 |
+
|
420 |
+
config_file = os.path.join(pretrained_model_path, 'config.json')
|
421 |
+
if not os.path.isfile(config_file):
|
422 |
+
raise RuntimeError(f"{config_file} does not exist")
|
423 |
+
with open(config_file, "r") as f:
|
424 |
+
config = json.load(f)
|
425 |
+
config["_class_name"] = cls.__name__
|
426 |
+
config["down_block_types"] = [
|
427 |
+
"CrossAttnDownBlock3D",
|
428 |
+
"CrossAttnDownBlock3D",
|
429 |
+
"CrossAttnDownBlock3D",
|
430 |
+
"DownBlock3D"
|
431 |
+
]
|
432 |
+
config["up_block_types"] = [
|
433 |
+
"UpBlock3D",
|
434 |
+
"CrossAttnUpBlock3D",
|
435 |
+
"CrossAttnUpBlock3D",
|
436 |
+
"CrossAttnUpBlock3D"
|
437 |
+
]
|
438 |
+
|
439 |
+
from diffusers.utils import WEIGHTS_NAME
|
440 |
+
model = cls.from_config(config)
|
441 |
+
model_file = os.path.join(pretrained_model_path, WEIGHTS_NAME)
|
442 |
+
if not os.path.isfile(model_file):
|
443 |
+
raise RuntimeError(f"{model_file} does not exist")
|
444 |
+
state_dict = torch.load(model_file, map_location="cpu")
|
445 |
+
for k, v in model.state_dict().items():
|
446 |
+
if '_temp.' in k:
|
447 |
+
state_dict.update({k: v})
|
448 |
+
model.load_state_dict(state_dict)
|
449 |
+
|
450 |
+
return model
|
tuneavideo/models/unet_blocks.py
ADDED
@@ -0,0 +1,588 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
from .attention import Transformer3DModel
|
7 |
+
from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
|
8 |
+
|
9 |
+
|
10 |
+
def get_down_block(
|
11 |
+
down_block_type,
|
12 |
+
num_layers,
|
13 |
+
in_channels,
|
14 |
+
out_channels,
|
15 |
+
temb_channels,
|
16 |
+
add_downsample,
|
17 |
+
resnet_eps,
|
18 |
+
resnet_act_fn,
|
19 |
+
attn_num_head_channels,
|
20 |
+
resnet_groups=None,
|
21 |
+
cross_attention_dim=None,
|
22 |
+
downsample_padding=None,
|
23 |
+
dual_cross_attention=False,
|
24 |
+
use_linear_projection=False,
|
25 |
+
only_cross_attention=False,
|
26 |
+
upcast_attention=False,
|
27 |
+
resnet_time_scale_shift="default",
|
28 |
+
):
|
29 |
+
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
30 |
+
if down_block_type == "DownBlock3D":
|
31 |
+
return DownBlock3D(
|
32 |
+
num_layers=num_layers,
|
33 |
+
in_channels=in_channels,
|
34 |
+
out_channels=out_channels,
|
35 |
+
temb_channels=temb_channels,
|
36 |
+
add_downsample=add_downsample,
|
37 |
+
resnet_eps=resnet_eps,
|
38 |
+
resnet_act_fn=resnet_act_fn,
|
39 |
+
resnet_groups=resnet_groups,
|
40 |
+
downsample_padding=downsample_padding,
|
41 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
42 |
+
)
|
43 |
+
elif down_block_type == "CrossAttnDownBlock3D":
|
44 |
+
if cross_attention_dim is None:
|
45 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D")
|
46 |
+
return CrossAttnDownBlock3D(
|
47 |
+
num_layers=num_layers,
|
48 |
+
in_channels=in_channels,
|
49 |
+
out_channels=out_channels,
|
50 |
+
temb_channels=temb_channels,
|
51 |
+
add_downsample=add_downsample,
|
52 |
+
resnet_eps=resnet_eps,
|
53 |
+
resnet_act_fn=resnet_act_fn,
|
54 |
+
resnet_groups=resnet_groups,
|
55 |
+
downsample_padding=downsample_padding,
|
56 |
+
cross_attention_dim=cross_attention_dim,
|
57 |
+
attn_num_head_channels=attn_num_head_channels,
|
58 |
+
dual_cross_attention=dual_cross_attention,
|
59 |
+
use_linear_projection=use_linear_projection,
|
60 |
+
only_cross_attention=only_cross_attention,
|
61 |
+
upcast_attention=upcast_attention,
|
62 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
63 |
+
)
|
64 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
65 |
+
|
66 |
+
|
67 |
+
def get_up_block(
|
68 |
+
up_block_type,
|
69 |
+
num_layers,
|
70 |
+
in_channels,
|
71 |
+
out_channels,
|
72 |
+
prev_output_channel,
|
73 |
+
temb_channels,
|
74 |
+
add_upsample,
|
75 |
+
resnet_eps,
|
76 |
+
resnet_act_fn,
|
77 |
+
attn_num_head_channels,
|
78 |
+
resnet_groups=None,
|
79 |
+
cross_attention_dim=None,
|
80 |
+
dual_cross_attention=False,
|
81 |
+
use_linear_projection=False,
|
82 |
+
only_cross_attention=False,
|
83 |
+
upcast_attention=False,
|
84 |
+
resnet_time_scale_shift="default",
|
85 |
+
):
|
86 |
+
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
87 |
+
if up_block_type == "UpBlock3D":
|
88 |
+
return UpBlock3D(
|
89 |
+
num_layers=num_layers,
|
90 |
+
in_channels=in_channels,
|
91 |
+
out_channels=out_channels,
|
92 |
+
prev_output_channel=prev_output_channel,
|
93 |
+
temb_channels=temb_channels,
|
94 |
+
add_upsample=add_upsample,
|
95 |
+
resnet_eps=resnet_eps,
|
96 |
+
resnet_act_fn=resnet_act_fn,
|
97 |
+
resnet_groups=resnet_groups,
|
98 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
99 |
+
)
|
100 |
+
elif up_block_type == "CrossAttnUpBlock3D":
|
101 |
+
if cross_attention_dim is None:
|
102 |
+
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D")
|
103 |
+
return CrossAttnUpBlock3D(
|
104 |
+
num_layers=num_layers,
|
105 |
+
in_channels=in_channels,
|
106 |
+
out_channels=out_channels,
|
107 |
+
prev_output_channel=prev_output_channel,
|
108 |
+
temb_channels=temb_channels,
|
109 |
+
add_upsample=add_upsample,
|
110 |
+
resnet_eps=resnet_eps,
|
111 |
+
resnet_act_fn=resnet_act_fn,
|
112 |
+
resnet_groups=resnet_groups,
|
113 |
+
cross_attention_dim=cross_attention_dim,
|
114 |
+
attn_num_head_channels=attn_num_head_channels,
|
115 |
+
dual_cross_attention=dual_cross_attention,
|
116 |
+
use_linear_projection=use_linear_projection,
|
117 |
+
only_cross_attention=only_cross_attention,
|
118 |
+
upcast_attention=upcast_attention,
|
119 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
120 |
+
)
|
121 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
122 |
+
|
123 |
+
|
124 |
+
class UNetMidBlock3DCrossAttn(nn.Module):
|
125 |
+
def __init__(
|
126 |
+
self,
|
127 |
+
in_channels: int,
|
128 |
+
temb_channels: int,
|
129 |
+
dropout: float = 0.0,
|
130 |
+
num_layers: int = 1,
|
131 |
+
resnet_eps: float = 1e-6,
|
132 |
+
resnet_time_scale_shift: str = "default",
|
133 |
+
resnet_act_fn: str = "swish",
|
134 |
+
resnet_groups: int = 32,
|
135 |
+
resnet_pre_norm: bool = True,
|
136 |
+
attn_num_head_channels=1,
|
137 |
+
output_scale_factor=1.0,
|
138 |
+
cross_attention_dim=1280,
|
139 |
+
dual_cross_attention=False,
|
140 |
+
use_linear_projection=False,
|
141 |
+
upcast_attention=False,
|
142 |
+
):
|
143 |
+
super().__init__()
|
144 |
+
|
145 |
+
self.has_cross_attention = True
|
146 |
+
self.attn_num_head_channels = attn_num_head_channels
|
147 |
+
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
148 |
+
|
149 |
+
# there is always at least one resnet
|
150 |
+
resnets = [
|
151 |
+
ResnetBlock3D(
|
152 |
+
in_channels=in_channels,
|
153 |
+
out_channels=in_channels,
|
154 |
+
temb_channels=temb_channels,
|
155 |
+
eps=resnet_eps,
|
156 |
+
groups=resnet_groups,
|
157 |
+
dropout=dropout,
|
158 |
+
time_embedding_norm=resnet_time_scale_shift,
|
159 |
+
non_linearity=resnet_act_fn,
|
160 |
+
output_scale_factor=output_scale_factor,
|
161 |
+
pre_norm=resnet_pre_norm,
|
162 |
+
)
|
163 |
+
]
|
164 |
+
attentions = []
|
165 |
+
|
166 |
+
for _ in range(num_layers):
|
167 |
+
if dual_cross_attention:
|
168 |
+
raise NotImplementedError
|
169 |
+
attentions.append(
|
170 |
+
Transformer3DModel(
|
171 |
+
attn_num_head_channels,
|
172 |
+
in_channels // attn_num_head_channels,
|
173 |
+
in_channels=in_channels,
|
174 |
+
num_layers=1,
|
175 |
+
cross_attention_dim=cross_attention_dim,
|
176 |
+
norm_num_groups=resnet_groups,
|
177 |
+
use_linear_projection=use_linear_projection,
|
178 |
+
upcast_attention=upcast_attention,
|
179 |
+
)
|
180 |
+
)
|
181 |
+
resnets.append(
|
182 |
+
ResnetBlock3D(
|
183 |
+
in_channels=in_channels,
|
184 |
+
out_channels=in_channels,
|
185 |
+
temb_channels=temb_channels,
|
186 |
+
eps=resnet_eps,
|
187 |
+
groups=resnet_groups,
|
188 |
+
dropout=dropout,
|
189 |
+
time_embedding_norm=resnet_time_scale_shift,
|
190 |
+
non_linearity=resnet_act_fn,
|
191 |
+
output_scale_factor=output_scale_factor,
|
192 |
+
pre_norm=resnet_pre_norm,
|
193 |
+
)
|
194 |
+
)
|
195 |
+
|
196 |
+
self.attentions = nn.ModuleList(attentions)
|
197 |
+
self.resnets = nn.ModuleList(resnets)
|
198 |
+
|
199 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
|
200 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
201 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
202 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
203 |
+
hidden_states = resnet(hidden_states, temb)
|
204 |
+
|
205 |
+
return hidden_states
|
206 |
+
|
207 |
+
|
208 |
+
class CrossAttnDownBlock3D(nn.Module):
|
209 |
+
def __init__(
|
210 |
+
self,
|
211 |
+
in_channels: int,
|
212 |
+
out_channels: int,
|
213 |
+
temb_channels: int,
|
214 |
+
dropout: float = 0.0,
|
215 |
+
num_layers: int = 1,
|
216 |
+
resnet_eps: float = 1e-6,
|
217 |
+
resnet_time_scale_shift: str = "default",
|
218 |
+
resnet_act_fn: str = "swish",
|
219 |
+
resnet_groups: int = 32,
|
220 |
+
resnet_pre_norm: bool = True,
|
221 |
+
attn_num_head_channels=1,
|
222 |
+
cross_attention_dim=1280,
|
223 |
+
output_scale_factor=1.0,
|
224 |
+
downsample_padding=1,
|
225 |
+
add_downsample=True,
|
226 |
+
dual_cross_attention=False,
|
227 |
+
use_linear_projection=False,
|
228 |
+
only_cross_attention=False,
|
229 |
+
upcast_attention=False,
|
230 |
+
):
|
231 |
+
super().__init__()
|
232 |
+
resnets = []
|
233 |
+
attentions = []
|
234 |
+
|
235 |
+
self.has_cross_attention = True
|
236 |
+
self.attn_num_head_channels = attn_num_head_channels
|
237 |
+
|
238 |
+
for i in range(num_layers):
|
239 |
+
in_channels = in_channels if i == 0 else out_channels
|
240 |
+
resnets.append(
|
241 |
+
ResnetBlock3D(
|
242 |
+
in_channels=in_channels,
|
243 |
+
out_channels=out_channels,
|
244 |
+
temb_channels=temb_channels,
|
245 |
+
eps=resnet_eps,
|
246 |
+
groups=resnet_groups,
|
247 |
+
dropout=dropout,
|
248 |
+
time_embedding_norm=resnet_time_scale_shift,
|
249 |
+
non_linearity=resnet_act_fn,
|
250 |
+
output_scale_factor=output_scale_factor,
|
251 |
+
pre_norm=resnet_pre_norm,
|
252 |
+
)
|
253 |
+
)
|
254 |
+
if dual_cross_attention:
|
255 |
+
raise NotImplementedError
|
256 |
+
attentions.append(
|
257 |
+
Transformer3DModel(
|
258 |
+
attn_num_head_channels,
|
259 |
+
out_channels // attn_num_head_channels,
|
260 |
+
in_channels=out_channels,
|
261 |
+
num_layers=1,
|
262 |
+
cross_attention_dim=cross_attention_dim,
|
263 |
+
norm_num_groups=resnet_groups,
|
264 |
+
use_linear_projection=use_linear_projection,
|
265 |
+
only_cross_attention=only_cross_attention,
|
266 |
+
upcast_attention=upcast_attention,
|
267 |
+
)
|
268 |
+
)
|
269 |
+
self.attentions = nn.ModuleList(attentions)
|
270 |
+
self.resnets = nn.ModuleList(resnets)
|
271 |
+
|
272 |
+
if add_downsample:
|
273 |
+
self.downsamplers = nn.ModuleList(
|
274 |
+
[
|
275 |
+
Downsample3D(
|
276 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
277 |
+
)
|
278 |
+
]
|
279 |
+
)
|
280 |
+
else:
|
281 |
+
self.downsamplers = None
|
282 |
+
|
283 |
+
self.gradient_checkpointing = False
|
284 |
+
|
285 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None, attention_mask=None):
|
286 |
+
output_states = ()
|
287 |
+
|
288 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
289 |
+
if self.training and self.gradient_checkpointing:
|
290 |
+
|
291 |
+
def create_custom_forward(module, return_dict=None):
|
292 |
+
def custom_forward(*inputs):
|
293 |
+
if return_dict is not None:
|
294 |
+
return module(*inputs, return_dict=return_dict)
|
295 |
+
else:
|
296 |
+
return module(*inputs)
|
297 |
+
|
298 |
+
return custom_forward
|
299 |
+
|
300 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
301 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
302 |
+
create_custom_forward(attn, return_dict=False),
|
303 |
+
hidden_states,
|
304 |
+
encoder_hidden_states,
|
305 |
+
)[0]
|
306 |
+
else:
|
307 |
+
hidden_states = resnet(hidden_states, temb)
|
308 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
309 |
+
|
310 |
+
output_states += (hidden_states,)
|
311 |
+
|
312 |
+
if self.downsamplers is not None:
|
313 |
+
for downsampler in self.downsamplers:
|
314 |
+
hidden_states = downsampler(hidden_states)
|
315 |
+
|
316 |
+
output_states += (hidden_states,)
|
317 |
+
|
318 |
+
return hidden_states, output_states
|
319 |
+
|
320 |
+
|
321 |
+
class DownBlock3D(nn.Module):
|
322 |
+
def __init__(
|
323 |
+
self,
|
324 |
+
in_channels: int,
|
325 |
+
out_channels: int,
|
326 |
+
temb_channels: int,
|
327 |
+
dropout: float = 0.0,
|
328 |
+
num_layers: int = 1,
|
329 |
+
resnet_eps: float = 1e-6,
|
330 |
+
resnet_time_scale_shift: str = "default",
|
331 |
+
resnet_act_fn: str = "swish",
|
332 |
+
resnet_groups: int = 32,
|
333 |
+
resnet_pre_norm: bool = True,
|
334 |
+
output_scale_factor=1.0,
|
335 |
+
add_downsample=True,
|
336 |
+
downsample_padding=1,
|
337 |
+
):
|
338 |
+
super().__init__()
|
339 |
+
resnets = []
|
340 |
+
|
341 |
+
for i in range(num_layers):
|
342 |
+
in_channels = in_channels if i == 0 else out_channels
|
343 |
+
resnets.append(
|
344 |
+
ResnetBlock3D(
|
345 |
+
in_channels=in_channels,
|
346 |
+
out_channels=out_channels,
|
347 |
+
temb_channels=temb_channels,
|
348 |
+
eps=resnet_eps,
|
349 |
+
groups=resnet_groups,
|
350 |
+
dropout=dropout,
|
351 |
+
time_embedding_norm=resnet_time_scale_shift,
|
352 |
+
non_linearity=resnet_act_fn,
|
353 |
+
output_scale_factor=output_scale_factor,
|
354 |
+
pre_norm=resnet_pre_norm,
|
355 |
+
)
|
356 |
+
)
|
357 |
+
|
358 |
+
self.resnets = nn.ModuleList(resnets)
|
359 |
+
|
360 |
+
if add_downsample:
|
361 |
+
self.downsamplers = nn.ModuleList(
|
362 |
+
[
|
363 |
+
Downsample3D(
|
364 |
+
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
365 |
+
)
|
366 |
+
]
|
367 |
+
)
|
368 |
+
else:
|
369 |
+
self.downsamplers = None
|
370 |
+
|
371 |
+
self.gradient_checkpointing = False
|
372 |
+
|
373 |
+
def forward(self, hidden_states, temb=None):
|
374 |
+
output_states = ()
|
375 |
+
|
376 |
+
for resnet in self.resnets:
|
377 |
+
if self.training and self.gradient_checkpointing:
|
378 |
+
|
379 |
+
def create_custom_forward(module):
|
380 |
+
def custom_forward(*inputs):
|
381 |
+
return module(*inputs)
|
382 |
+
|
383 |
+
return custom_forward
|
384 |
+
|
385 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
386 |
+
else:
|
387 |
+
hidden_states = resnet(hidden_states, temb)
|
388 |
+
|
389 |
+
output_states += (hidden_states,)
|
390 |
+
|
391 |
+
if self.downsamplers is not None:
|
392 |
+
for downsampler in self.downsamplers:
|
393 |
+
hidden_states = downsampler(hidden_states)
|
394 |
+
|
395 |
+
output_states += (hidden_states,)
|
396 |
+
|
397 |
+
return hidden_states, output_states
|
398 |
+
|
399 |
+
|
400 |
+
class CrossAttnUpBlock3D(nn.Module):
|
401 |
+
def __init__(
|
402 |
+
self,
|
403 |
+
in_channels: int,
|
404 |
+
out_channels: int,
|
405 |
+
prev_output_channel: int,
|
406 |
+
temb_channels: int,
|
407 |
+
dropout: float = 0.0,
|
408 |
+
num_layers: int = 1,
|
409 |
+
resnet_eps: float = 1e-6,
|
410 |
+
resnet_time_scale_shift: str = "default",
|
411 |
+
resnet_act_fn: str = "swish",
|
412 |
+
resnet_groups: int = 32,
|
413 |
+
resnet_pre_norm: bool = True,
|
414 |
+
attn_num_head_channels=1,
|
415 |
+
cross_attention_dim=1280,
|
416 |
+
output_scale_factor=1.0,
|
417 |
+
add_upsample=True,
|
418 |
+
dual_cross_attention=False,
|
419 |
+
use_linear_projection=False,
|
420 |
+
only_cross_attention=False,
|
421 |
+
upcast_attention=False,
|
422 |
+
):
|
423 |
+
super().__init__()
|
424 |
+
resnets = []
|
425 |
+
attentions = []
|
426 |
+
|
427 |
+
self.has_cross_attention = True
|
428 |
+
self.attn_num_head_channels = attn_num_head_channels
|
429 |
+
|
430 |
+
for i in range(num_layers):
|
431 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
432 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
433 |
+
|
434 |
+
resnets.append(
|
435 |
+
ResnetBlock3D(
|
436 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
437 |
+
out_channels=out_channels,
|
438 |
+
temb_channels=temb_channels,
|
439 |
+
eps=resnet_eps,
|
440 |
+
groups=resnet_groups,
|
441 |
+
dropout=dropout,
|
442 |
+
time_embedding_norm=resnet_time_scale_shift,
|
443 |
+
non_linearity=resnet_act_fn,
|
444 |
+
output_scale_factor=output_scale_factor,
|
445 |
+
pre_norm=resnet_pre_norm,
|
446 |
+
)
|
447 |
+
)
|
448 |
+
if dual_cross_attention:
|
449 |
+
raise NotImplementedError
|
450 |
+
attentions.append(
|
451 |
+
Transformer3DModel(
|
452 |
+
attn_num_head_channels,
|
453 |
+
out_channels // attn_num_head_channels,
|
454 |
+
in_channels=out_channels,
|
455 |
+
num_layers=1,
|
456 |
+
cross_attention_dim=cross_attention_dim,
|
457 |
+
norm_num_groups=resnet_groups,
|
458 |
+
use_linear_projection=use_linear_projection,
|
459 |
+
only_cross_attention=only_cross_attention,
|
460 |
+
upcast_attention=upcast_attention,
|
461 |
+
)
|
462 |
+
)
|
463 |
+
|
464 |
+
self.attentions = nn.ModuleList(attentions)
|
465 |
+
self.resnets = nn.ModuleList(resnets)
|
466 |
+
|
467 |
+
if add_upsample:
|
468 |
+
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
|
469 |
+
else:
|
470 |
+
self.upsamplers = None
|
471 |
+
|
472 |
+
self.gradient_checkpointing = False
|
473 |
+
|
474 |
+
def forward(
|
475 |
+
self,
|
476 |
+
hidden_states,
|
477 |
+
res_hidden_states_tuple,
|
478 |
+
temb=None,
|
479 |
+
encoder_hidden_states=None,
|
480 |
+
upsample_size=None,
|
481 |
+
attention_mask=None,
|
482 |
+
):
|
483 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
484 |
+
# pop res hidden states
|
485 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
486 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
487 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
488 |
+
|
489 |
+
if self.training and self.gradient_checkpointing:
|
490 |
+
|
491 |
+
def create_custom_forward(module, return_dict=None):
|
492 |
+
def custom_forward(*inputs):
|
493 |
+
if return_dict is not None:
|
494 |
+
return module(*inputs, return_dict=return_dict)
|
495 |
+
else:
|
496 |
+
return module(*inputs)
|
497 |
+
|
498 |
+
return custom_forward
|
499 |
+
|
500 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
501 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
502 |
+
create_custom_forward(attn, return_dict=False),
|
503 |
+
hidden_states,
|
504 |
+
encoder_hidden_states,
|
505 |
+
)[0]
|
506 |
+
else:
|
507 |
+
hidden_states = resnet(hidden_states, temb)
|
508 |
+
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
|
509 |
+
|
510 |
+
if self.upsamplers is not None:
|
511 |
+
for upsampler in self.upsamplers:
|
512 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
513 |
+
|
514 |
+
return hidden_states
|
515 |
+
|
516 |
+
|
517 |
+
class UpBlock3D(nn.Module):
|
518 |
+
def __init__(
|
519 |
+
self,
|
520 |
+
in_channels: int,
|
521 |
+
prev_output_channel: int,
|
522 |
+
out_channels: int,
|
523 |
+
temb_channels: int,
|
524 |
+
dropout: float = 0.0,
|
525 |
+
num_layers: int = 1,
|
526 |
+
resnet_eps: float = 1e-6,
|
527 |
+
resnet_time_scale_shift: str = "default",
|
528 |
+
resnet_act_fn: str = "swish",
|
529 |
+
resnet_groups: int = 32,
|
530 |
+
resnet_pre_norm: bool = True,
|
531 |
+
output_scale_factor=1.0,
|
532 |
+
add_upsample=True,
|
533 |
+
):
|
534 |
+
super().__init__()
|
535 |
+
resnets = []
|
536 |
+
|
537 |
+
for i in range(num_layers):
|
538 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
539 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
540 |
+
|
541 |
+
resnets.append(
|
542 |
+
ResnetBlock3D(
|
543 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
544 |
+
out_channels=out_channels,
|
545 |
+
temb_channels=temb_channels,
|
546 |
+
eps=resnet_eps,
|
547 |
+
groups=resnet_groups,
|
548 |
+
dropout=dropout,
|
549 |
+
time_embedding_norm=resnet_time_scale_shift,
|
550 |
+
non_linearity=resnet_act_fn,
|
551 |
+
output_scale_factor=output_scale_factor,
|
552 |
+
pre_norm=resnet_pre_norm,
|
553 |
+
)
|
554 |
+
)
|
555 |
+
|
556 |
+
self.resnets = nn.ModuleList(resnets)
|
557 |
+
|
558 |
+
if add_upsample:
|
559 |
+
self.upsamplers = nn.ModuleList([Upsample3D(out_channels, use_conv=True, out_channels=out_channels)])
|
560 |
+
else:
|
561 |
+
self.upsamplers = None
|
562 |
+
|
563 |
+
self.gradient_checkpointing = False
|
564 |
+
|
565 |
+
def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
|
566 |
+
for resnet in self.resnets:
|
567 |
+
# pop res hidden states
|
568 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
569 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
570 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
571 |
+
|
572 |
+
if self.training and self.gradient_checkpointing:
|
573 |
+
|
574 |
+
def create_custom_forward(module):
|
575 |
+
def custom_forward(*inputs):
|
576 |
+
return module(*inputs)
|
577 |
+
|
578 |
+
return custom_forward
|
579 |
+
|
580 |
+
hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
|
581 |
+
else:
|
582 |
+
hidden_states = resnet(hidden_states, temb)
|
583 |
+
|
584 |
+
if self.upsamplers is not None:
|
585 |
+
for upsampler in self.upsamplers:
|
586 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
587 |
+
|
588 |
+
return hidden_states
|
tuneavideo/pipelines/pipeline_tuneavideo.py
ADDED
@@ -0,0 +1,449 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
|
2 |
+
|
3 |
+
import inspect
|
4 |
+
from typing import Callable, List, Optional, Union
|
5 |
+
from dataclasses import dataclass
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
|
10 |
+
from diffusers.utils import is_accelerate_available
|
11 |
+
from packaging import version
|
12 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
13 |
+
|
14 |
+
from diffusers.configuration_utils import FrozenDict
|
15 |
+
from diffusers.models import AutoencoderKL
|
16 |
+
from diffusers.pipeline_utils import DiffusionPipeline
|
17 |
+
from diffusers.schedulers import (
|
18 |
+
DDIMScheduler,
|
19 |
+
DPMSolverMultistepScheduler,
|
20 |
+
EulerAncestralDiscreteScheduler,
|
21 |
+
EulerDiscreteScheduler,
|
22 |
+
LMSDiscreteScheduler,
|
23 |
+
PNDMScheduler,
|
24 |
+
)
|
25 |
+
from diffusers.utils import deprecate, logging, BaseOutput
|
26 |
+
|
27 |
+
from einops import rearrange, repeat
|
28 |
+
|
29 |
+
from ..models.unet import UNet3DConditionModel
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
33 |
+
|
34 |
+
|
35 |
+
@dataclass
|
36 |
+
class TuneAVideoPipelineOutput(BaseOutput):
|
37 |
+
videos: Union[torch.Tensor, np.ndarray]
|
38 |
+
|
39 |
+
|
40 |
+
class TuneAVideoPipeline(DiffusionPipeline):
|
41 |
+
_optional_components = []
|
42 |
+
|
43 |
+
def __init__(
|
44 |
+
self,
|
45 |
+
vae: AutoencoderKL,
|
46 |
+
text_encoder: CLIPTextModel,
|
47 |
+
tokenizer: CLIPTokenizer,
|
48 |
+
unet: UNet3DConditionModel,
|
49 |
+
scheduler: Union[
|
50 |
+
DDIMScheduler,
|
51 |
+
PNDMScheduler,
|
52 |
+
LMSDiscreteScheduler,
|
53 |
+
EulerDiscreteScheduler,
|
54 |
+
EulerAncestralDiscreteScheduler,
|
55 |
+
DPMSolverMultistepScheduler,
|
56 |
+
],
|
57 |
+
):
|
58 |
+
super().__init__()
|
59 |
+
|
60 |
+
if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
|
61 |
+
deprecation_message = (
|
62 |
+
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
63 |
+
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
64 |
+
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
65 |
+
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
66 |
+
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
67 |
+
" file"
|
68 |
+
)
|
69 |
+
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
70 |
+
new_config = dict(scheduler.config)
|
71 |
+
new_config["steps_offset"] = 1
|
72 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
73 |
+
|
74 |
+
if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True:
|
75 |
+
deprecation_message = (
|
76 |
+
f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
77 |
+
" `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
78 |
+
" config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
79 |
+
" future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
80 |
+
" nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
81 |
+
)
|
82 |
+
deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
83 |
+
new_config = dict(scheduler.config)
|
84 |
+
new_config["clip_sample"] = False
|
85 |
+
scheduler._internal_dict = FrozenDict(new_config)
|
86 |
+
|
87 |
+
is_unet_version_less_0_9_0 = hasattr(unet.config, "_diffusers_version") and version.parse(
|
88 |
+
version.parse(unet.config._diffusers_version).base_version
|
89 |
+
) < version.parse("0.9.0.dev0")
|
90 |
+
is_unet_sample_size_less_64 = hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
91 |
+
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
92 |
+
deprecation_message = (
|
93 |
+
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
94 |
+
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
95 |
+
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
96 |
+
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- runwayml/stable-diffusion-v1-5"
|
97 |
+
" \n- runwayml/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
98 |
+
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
99 |
+
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
100 |
+
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
101 |
+
" the `unet/config.json` file"
|
102 |
+
)
|
103 |
+
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
104 |
+
new_config = dict(unet.config)
|
105 |
+
new_config["sample_size"] = 64
|
106 |
+
unet._internal_dict = FrozenDict(new_config)
|
107 |
+
|
108 |
+
self.register_modules(
|
109 |
+
vae=vae,
|
110 |
+
text_encoder=text_encoder,
|
111 |
+
tokenizer=tokenizer,
|
112 |
+
unet=unet,
|
113 |
+
scheduler=scheduler,
|
114 |
+
)
|
115 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
116 |
+
|
117 |
+
def enable_vae_slicing(self):
|
118 |
+
self.vae.enable_slicing()
|
119 |
+
|
120 |
+
def disable_vae_slicing(self):
|
121 |
+
self.vae.disable_slicing()
|
122 |
+
|
123 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
124 |
+
if is_accelerate_available():
|
125 |
+
from accelerate import cpu_offload
|
126 |
+
else:
|
127 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
128 |
+
|
129 |
+
device = torch.device(f"cuda:{gpu_id}")
|
130 |
+
|
131 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
132 |
+
if cpu_offloaded_model is not None:
|
133 |
+
cpu_offload(cpu_offloaded_model, device)
|
134 |
+
|
135 |
+
|
136 |
+
@property
|
137 |
+
def _execution_device(self):
|
138 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
139 |
+
return self.device
|
140 |
+
for module in self.unet.modules():
|
141 |
+
if (
|
142 |
+
hasattr(module, "_hf_hook")
|
143 |
+
and hasattr(module._hf_hook, "execution_device")
|
144 |
+
and module._hf_hook.execution_device is not None
|
145 |
+
):
|
146 |
+
return torch.device(module._hf_hook.execution_device)
|
147 |
+
return self.device
|
148 |
+
|
149 |
+
def _encode_prompt(self, prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt):
|
150 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
151 |
+
|
152 |
+
text_inputs = self.tokenizer(
|
153 |
+
prompt,
|
154 |
+
padding="max_length",
|
155 |
+
max_length=self.tokenizer.model_max_length,
|
156 |
+
truncation=True,
|
157 |
+
return_tensors="pt",
|
158 |
+
)
|
159 |
+
text_input_ids = text_inputs.input_ids
|
160 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
161 |
+
|
162 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
163 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
|
164 |
+
logger.warning(
|
165 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
166 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
167 |
+
)
|
168 |
+
|
169 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
170 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
171 |
+
else:
|
172 |
+
attention_mask = None
|
173 |
+
|
174 |
+
text_embeddings = self.text_encoder(
|
175 |
+
text_input_ids.to(device),
|
176 |
+
attention_mask=attention_mask,
|
177 |
+
)
|
178 |
+
text_embeddings = text_embeddings[0]
|
179 |
+
|
180 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
181 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
182 |
+
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
|
183 |
+
text_embeddings = text_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1)
|
184 |
+
|
185 |
+
# get unconditional embeddings for classifier free guidance
|
186 |
+
if do_classifier_free_guidance:
|
187 |
+
uncond_tokens: List[str]
|
188 |
+
if negative_prompt is None:
|
189 |
+
uncond_tokens = [""] * batch_size
|
190 |
+
elif type(prompt) is not type(negative_prompt):
|
191 |
+
raise TypeError(
|
192 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
193 |
+
f" {type(prompt)}."
|
194 |
+
)
|
195 |
+
elif isinstance(negative_prompt, str):
|
196 |
+
uncond_tokens = [negative_prompt]
|
197 |
+
elif batch_size != len(negative_prompt):
|
198 |
+
raise ValueError(
|
199 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
200 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
201 |
+
" the batch size of `prompt`."
|
202 |
+
)
|
203 |
+
else:
|
204 |
+
uncond_tokens = negative_prompt
|
205 |
+
|
206 |
+
max_length = text_input_ids.shape[-1]
|
207 |
+
uncond_input = self.tokenizer(
|
208 |
+
uncond_tokens,
|
209 |
+
padding="max_length",
|
210 |
+
max_length=max_length,
|
211 |
+
truncation=True,
|
212 |
+
return_tensors="pt",
|
213 |
+
)
|
214 |
+
|
215 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
216 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
217 |
+
else:
|
218 |
+
attention_mask = None
|
219 |
+
|
220 |
+
uncond_embeddings = self.text_encoder(
|
221 |
+
uncond_input.input_ids.to(device),
|
222 |
+
attention_mask=attention_mask,
|
223 |
+
)
|
224 |
+
uncond_embeddings = uncond_embeddings[0]
|
225 |
+
|
226 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
227 |
+
seq_len = uncond_embeddings.shape[1]
|
228 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
|
229 |
+
uncond_embeddings = uncond_embeddings.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
230 |
+
|
231 |
+
# For classifier free guidance, we need to do two forward passes.
|
232 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
233 |
+
# to avoid doing two forward passes
|
234 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
235 |
+
|
236 |
+
return text_embeddings
|
237 |
+
|
238 |
+
def decode_latents(self, latents):
|
239 |
+
video_length = latents.shape[2]
|
240 |
+
latents = 1 / 0.18215 * latents
|
241 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
242 |
+
bs = 4
|
243 |
+
video_list = []
|
244 |
+
for i in range(max(latents.shape[0]//bs, 1)):
|
245 |
+
video = self.vae.decode(latents[i*bs:min((i+1)*bs, latents.shape[0])]).sample
|
246 |
+
video = (video / 2 + 0.5).clamp(0, 1)
|
247 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
248 |
+
video = video.cpu().float().numpy()
|
249 |
+
video_list.append(video)
|
250 |
+
if len(video_list) > 1:
|
251 |
+
video = np.concatenate(video_list, axis=0)
|
252 |
+
else:
|
253 |
+
video = video_list[0]
|
254 |
+
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
255 |
+
return video
|
256 |
+
|
257 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
258 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
259 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
260 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
261 |
+
# and should be between [0, 1]
|
262 |
+
|
263 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
264 |
+
extra_step_kwargs = {}
|
265 |
+
if accepts_eta:
|
266 |
+
extra_step_kwargs["eta"] = eta
|
267 |
+
|
268 |
+
# check if the scheduler accepts generator
|
269 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
270 |
+
if accepts_generator:
|
271 |
+
extra_step_kwargs["generator"] = generator
|
272 |
+
return extra_step_kwargs
|
273 |
+
|
274 |
+
def check_inputs(self, prompt, height, width, callback_steps):
|
275 |
+
if not isinstance(prompt, str) and not isinstance(prompt, list):
|
276 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
277 |
+
|
278 |
+
if height % 8 != 0 or width % 8 != 0:
|
279 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
280 |
+
|
281 |
+
if (callback_steps is None) or (
|
282 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
283 |
+
):
|
284 |
+
raise ValueError(
|
285 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
286 |
+
f" {type(callback_steps)}."
|
287 |
+
)
|
288 |
+
|
289 |
+
def prepare_latents(self, batch_size, num_channels_latents, video_length, height, width, dtype, device, generator, latents=None):
|
290 |
+
shape = (batch_size, num_channels_latents, video_length, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
291 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
292 |
+
raise ValueError(
|
293 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
294 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
295 |
+
)
|
296 |
+
|
297 |
+
if latents is None:
|
298 |
+
rand_device = "cpu" if device.type == "mps" else device
|
299 |
+
|
300 |
+
if isinstance(generator, list):
|
301 |
+
shape = (1,) + shape[1:]
|
302 |
+
latents = [
|
303 |
+
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype)
|
304 |
+
for i in range(batch_size)
|
305 |
+
]
|
306 |
+
latents = torch.cat(latents, dim=0).to(device)
|
307 |
+
else:
|
308 |
+
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype).to(device)
|
309 |
+
else:
|
310 |
+
if latents.shape != shape:
|
311 |
+
# raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
312 |
+
latents = latents.expand(shape)
|
313 |
+
latents = latents.to(device)
|
314 |
+
|
315 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
316 |
+
latents = latents * self.scheduler.init_noise_sigma
|
317 |
+
return latents
|
318 |
+
|
319 |
+
@torch.no_grad()
|
320 |
+
def __call__(
|
321 |
+
self,
|
322 |
+
prompt: Union[str, List[str]],
|
323 |
+
video_length: Optional[int],
|
324 |
+
height: Optional[int] = 512,
|
325 |
+
width: Optional[int] = 512,
|
326 |
+
num_inference_steps: int = 50,
|
327 |
+
guidance_scale: float = 7.5,
|
328 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
329 |
+
num_videos_per_prompt: Optional[int] = 1,
|
330 |
+
eta: float = 0.0,
|
331 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
332 |
+
latents: Optional[torch.FloatTensor] = None,
|
333 |
+
output_type: Optional[str] = "tensor",
|
334 |
+
return_dict: bool = True,
|
335 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
336 |
+
callback_steps: Optional[int] = 1,
|
337 |
+
uncond_embeddings_pre=None,
|
338 |
+
controller=None,
|
339 |
+
uncond2=False,
|
340 |
+
multi=False,
|
341 |
+
region=False,
|
342 |
+
simple=False,
|
343 |
+
**kwargs,
|
344 |
+
):
|
345 |
+
# Default height and width to unet
|
346 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
347 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
348 |
+
|
349 |
+
# Check inputs. Raise error if not correct
|
350 |
+
self.check_inputs(prompt, height, width, callback_steps)
|
351 |
+
|
352 |
+
# Define call parameters
|
353 |
+
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
354 |
+
device = self._execution_device
|
355 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
356 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
357 |
+
# corresponds to doing no classifier free guidance.
|
358 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
359 |
+
|
360 |
+
# Encode input prompt
|
361 |
+
text_embeddings = self._encode_prompt(
|
362 |
+
prompt, device, num_videos_per_prompt, do_classifier_free_guidance, negative_prompt
|
363 |
+
)
|
364 |
+
if multi:
|
365 |
+
text_embeddings = repeat(text_embeddings, 'b n c -> (b f) n c', f=video_length)
|
366 |
+
|
367 |
+
# Prepare timesteps
|
368 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
369 |
+
timesteps = self.scheduler.timesteps
|
370 |
+
|
371 |
+
# Prepare latent variables
|
372 |
+
num_channels_latents = self.unet.in_channels
|
373 |
+
latents = self.prepare_latents(
|
374 |
+
batch_size * num_videos_per_prompt,
|
375 |
+
num_channels_latents,
|
376 |
+
video_length,
|
377 |
+
height,
|
378 |
+
width,
|
379 |
+
text_embeddings.dtype,
|
380 |
+
device,
|
381 |
+
generator,
|
382 |
+
latents,
|
383 |
+
)
|
384 |
+
latents_dtype = latents.dtype
|
385 |
+
|
386 |
+
# Prepare extra step kwargs.
|
387 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
388 |
+
|
389 |
+
# Denoising loop
|
390 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
391 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
392 |
+
for i, t in enumerate(timesteps):
|
393 |
+
# expand the latents if we are doing classifier free guidance
|
394 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
395 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # torch.Size([2, 4, 8, 64, 64])
|
396 |
+
|
397 |
+
if uncond_embeddings_pre is not None:
|
398 |
+
if multi:
|
399 |
+
text_embeddings[:video_length] = uncond_embeddings_pre[i]
|
400 |
+
else:
|
401 |
+
text_embeddings[0] = uncond_embeddings_pre[i] # text_embeddings: torch.Size([2, 77, 768])
|
402 |
+
if region:
|
403 |
+
text_embeddings[2] = uncond_embeddings_pre[i] # text_embeddings: torch.Size([2, 77, 768])
|
404 |
+
if uncond2:
|
405 |
+
if multi:
|
406 |
+
text_embeddings[video_length: video_length*2] = uncond_embeddings_pre[i]
|
407 |
+
else:
|
408 |
+
text_embeddings[1] = uncond_embeddings_pre[i] # text_embeddings: torch.Size([2, 77, 768])
|
409 |
+
|
410 |
+
# predict the noise residual
|
411 |
+
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample.to(dtype=latents_dtype)
|
412 |
+
if region:
|
413 |
+
mask = controller.get_mask(latents[:-1])[1:2]
|
414 |
+
noise_pred[1] = noise_pred[2]*(1-mask) + noise_pred[1]*mask
|
415 |
+
# noise_pred[1] = noise_pred[2]
|
416 |
+
|
417 |
+
# perform guidance
|
418 |
+
if do_classifier_free_guidance:
|
419 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
420 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
421 |
+
if simple:
|
422 |
+
noise_pred[0] = noise_pred_text[0]
|
423 |
+
|
424 |
+
# compute the previous noisy sample x_t -> x_t-1
|
425 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
426 |
+
|
427 |
+
if controller is not None:
|
428 |
+
latents = controller.step_callback(latents)
|
429 |
+
|
430 |
+
# call the callback, if provided
|
431 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
432 |
+
progress_bar.update()
|
433 |
+
if callback is not None and i % callback_steps == 0:
|
434 |
+
callback(i, t, latents)
|
435 |
+
|
436 |
+
if region:
|
437 |
+
latents = latents[:2]
|
438 |
+
|
439 |
+
# Post-processing
|
440 |
+
video = self.decode_latents(latents)
|
441 |
+
|
442 |
+
# Convert to tensor
|
443 |
+
if output_type == "tensor":
|
444 |
+
video = torch.from_numpy(video)
|
445 |
+
|
446 |
+
if not return_dict:
|
447 |
+
return video
|
448 |
+
|
449 |
+
return TuneAVideoPipelineOutput(videos=video)
|
tuneavideo/util.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import imageio
|
3 |
+
import numpy as np
|
4 |
+
from typing import Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torchvision
|
8 |
+
|
9 |
+
from tqdm import tqdm
|
10 |
+
from einops import rearrange
|
11 |
+
|
12 |
+
|
13 |
+
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=4, fps=8):
|
14 |
+
videos = rearrange(videos, "b c t h w -> t b c h w")
|
15 |
+
outputs = []
|
16 |
+
for x in videos:
|
17 |
+
x = torchvision.utils.make_grid(x, nrow=n_rows)
|
18 |
+
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)
|
19 |
+
if rescale:
|
20 |
+
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
21 |
+
x = (x * 255).numpy().astype(np.uint8)
|
22 |
+
outputs.append(x)
|
23 |
+
|
24 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
25 |
+
imageio.mimsave(path, outputs, fps=fps)
|
26 |
+
|
27 |
+
|
28 |
+
# DDIM Inversion
|
29 |
+
@torch.no_grad()
|
30 |
+
def init_prompt(prompt, pipeline):
|
31 |
+
uncond_input = pipeline.tokenizer(
|
32 |
+
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length,
|
33 |
+
return_tensors="pt"
|
34 |
+
)
|
35 |
+
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0]
|
36 |
+
text_input = pipeline.tokenizer(
|
37 |
+
[prompt],
|
38 |
+
padding="max_length",
|
39 |
+
max_length=pipeline.tokenizer.model_max_length,
|
40 |
+
truncation=True,
|
41 |
+
return_tensors="pt",
|
42 |
+
)
|
43 |
+
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0]
|
44 |
+
context = torch.cat([uncond_embeddings, text_embeddings])
|
45 |
+
|
46 |
+
return context
|
47 |
+
|
48 |
+
|
49 |
+
def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int,
|
50 |
+
sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler):
|
51 |
+
timestep, next_timestep = min(
|
52 |
+
timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep
|
53 |
+
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod
|
54 |
+
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep]
|
55 |
+
beta_prod_t = 1 - alpha_prod_t
|
56 |
+
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
|
57 |
+
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output
|
58 |
+
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction
|
59 |
+
return next_sample
|
60 |
+
|
61 |
+
|
62 |
+
def get_noise_pred_single(latents, t, context, unet):
|
63 |
+
noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"]
|
64 |
+
return noise_pred
|
65 |
+
|
66 |
+
|
67 |
+
@torch.no_grad()
|
68 |
+
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt):
|
69 |
+
context = init_prompt(prompt, pipeline)
|
70 |
+
uncond_embeddings, cond_embeddings = context.chunk(2)
|
71 |
+
all_latent = [latent]
|
72 |
+
latent = latent.clone().detach()
|
73 |
+
for i in tqdm(range(num_inv_steps)):
|
74 |
+
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1]
|
75 |
+
noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet)
|
76 |
+
latent = next_step(noise_pred, t, latent, ddim_scheduler)
|
77 |
+
all_latent.append(latent)
|
78 |
+
return all_latent
|
79 |
+
|
80 |
+
|
81 |
+
@torch.no_grad()
|
82 |
+
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""):
|
83 |
+
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt)
|
84 |
+
return ddim_latents
|