Spaces:
Sleeping
Sleeping
vidyasharma17
commited on
Commit
•
7b5193c
1
Parent(s):
c8b3d89
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,56 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
-
|
4 |
-
"""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
-
|
9 |
-
|
10 |
-
def respond(
|
11 |
-
message,
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
-
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
2 |
+
from sklearn.naive_bayes import MultinomialNB
|
3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# Example data
|
6 |
+
train_queries = [
|
7 |
+
"How do I activate my card?",
|
8 |
+
"What is the age limit for opening an account?",
|
9 |
+
"Do you support Apple Pay or Google Pay?",
|
10 |
+
]
|
11 |
+
train_labels = [0, 1, 2]
|
12 |
+
|
13 |
+
responses = {
|
14 |
+
0: "To activate your card, please go to the app's settings.",
|
15 |
+
1: "The age limit for opening an account is 18 years.",
|
16 |
+
2: "Yes, we support Apple Pay and Google Pay.",
|
17 |
+
}
|
18 |
+
|
19 |
+
label_to_intent = {0: "activate_my_card", 1: "age_limit", 2: "apple_pay_or_google_pay"}
|
20 |
+
|
21 |
+
# Prepare the Naive Bayes model
|
22 |
+
vectorizer = CountVectorizer()
|
23 |
+
X_train = vectorizer.fit_transform(train_queries)
|
24 |
+
|
25 |
+
clf = MultinomialNB()
|
26 |
+
clf.fit(X_train, train_labels)
|
27 |
+
|
28 |
+
# Define the chatbot response function
|
29 |
+
def naive_bayes_response(user_input):
|
30 |
+
vectorized_input = vectorizer.transform([user_input])
|
31 |
+
predicted_label = clf.predict(vectorized_input)[0]
|
32 |
+
return responses.get(predicted_label, "Sorry, I couldn't understand your query.")
|
33 |
+
|
34 |
+
# Define Gradio interface
|
35 |
+
def chatbot_interface(user_input):
|
36 |
+
return naive_bayes_response(user_input)
|
37 |
+
|
38 |
+
# UI design with Gradio
|
39 |
+
with gr.Blocks() as demo:
|
40 |
+
gr.Markdown("# Naive Bayes Chatbot")
|
41 |
+
gr.Markdown("This is a chatbot powered by Naive Bayes that handles basic queries.")
|
42 |
+
with gr.Row():
|
43 |
+
with gr.Column():
|
44 |
+
user_input = gr.Textbox(
|
45 |
+
label="Your Query",
|
46 |
+
placeholder="Type your question here...",
|
47 |
+
lines=1,
|
48 |
+
)
|
49 |
+
submit_btn = gr.Button("Submit")
|
50 |
+
with gr.Column():
|
51 |
+
response = gr.Textbox(label="Chatbot Response", interactive=False)
|
52 |
+
submit_btn.click(chatbot_interface, inputs=user_input, outputs=response)
|
53 |
+
|
54 |
+
# Run the app
|
55 |
if __name__ == "__main__":
|
56 |
+
demo.launch()
|