vidyasharma17 commited on
Commit
7b5193c
1 Parent(s): c8b3d89

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -61
app.py CHANGED
@@ -1,64 +1,56 @@
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ from sklearn.feature_extraction.text import CountVectorizer
2
+ from sklearn.naive_bayes import MultinomialNB
3
  import gradio as gr
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
 
5
+ # Example data
6
+ train_queries = [
7
+ "How do I activate my card?",
8
+ "What is the age limit for opening an account?",
9
+ "Do you support Apple Pay or Google Pay?",
10
+ ]
11
+ train_labels = [0, 1, 2]
12
+
13
+ responses = {
14
+ 0: "To activate your card, please go to the app's settings.",
15
+ 1: "The age limit for opening an account is 18 years.",
16
+ 2: "Yes, we support Apple Pay and Google Pay.",
17
+ }
18
+
19
+ label_to_intent = {0: "activate_my_card", 1: "age_limit", 2: "apple_pay_or_google_pay"}
20
+
21
+ # Prepare the Naive Bayes model
22
+ vectorizer = CountVectorizer()
23
+ X_train = vectorizer.fit_transform(train_queries)
24
+
25
+ clf = MultinomialNB()
26
+ clf.fit(X_train, train_labels)
27
+
28
+ # Define the chatbot response function
29
+ def naive_bayes_response(user_input):
30
+ vectorized_input = vectorizer.transform([user_input])
31
+ predicted_label = clf.predict(vectorized_input)[0]
32
+ return responses.get(predicted_label, "Sorry, I couldn't understand your query.")
33
+
34
+ # Define Gradio interface
35
+ def chatbot_interface(user_input):
36
+ return naive_bayes_response(user_input)
37
+
38
+ # UI design with Gradio
39
+ with gr.Blocks() as demo:
40
+ gr.Markdown("# Naive Bayes Chatbot")
41
+ gr.Markdown("This is a chatbot powered by Naive Bayes that handles basic queries.")
42
+ with gr.Row():
43
+ with gr.Column():
44
+ user_input = gr.Textbox(
45
+ label="Your Query",
46
+ placeholder="Type your question here...",
47
+ lines=1,
48
+ )
49
+ submit_btn = gr.Button("Submit")
50
+ with gr.Column():
51
+ response = gr.Textbox(label="Chatbot Response", interactive=False)
52
+ submit_btn.click(chatbot_interface, inputs=user_input, outputs=response)
53
+
54
+ # Run the app
55
  if __name__ == "__main__":
56
+ demo.launch()