import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the model and tokenizer locally in bfloat16 precision model_name = "vietdata/llama32_1b_pub" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, # Load model in bfloat16 precision device_map="auto" if torch.cuda.is_available() else None, # Automatically map to available devices ) # Define the respond function def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): from transformers import TextGenerationPipeline # Build the conversation context prompt = system_message + "\n" for user_msg, bot_msg in history: if user_msg: prompt += f"User: {user_msg}\n" if bot_msg: prompt += f"Bot: {bot_msg}\n" prompt += f"User: {message}\nBot:" # Set up a text generation pipeline pipe = TextGenerationPipeline( model=model, tokenizer=tokenizer, device=torch.cuda.current_device() if torch.cuda.is_available() else -1 ) # Generate the response response = pipe( prompt, max_length=len(prompt) + max_tokens, temperature=temperature, top_p=top_p, pad_token_id=tokenizer.eos_token_id )[0]["generated_text"] # Extract the generated part only generated_response = response[len(prompt):] yield generated_response # Gradio app definition demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()