Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import TrOCRProcessor, VisionEncoderDecoderModel | |
import requests | |
from PIL import Image | |
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-small-handwritten") | |
model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-small-handwritten") | |
# 2 cpu and 16gib ram | |
def process_image(image): | |
pixel_values = processor(image, return_tensors="pt").pixel_values | |
generated_ids = model.generate(pixel_values) | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return generated_text | |
title = "Transforme(encoder-decoder) based Text OCR" | |
description = "Demo for Microsoft's TrOCR, an encoder-decoder model \ | |
consisting of an image Transformer encoder and a text Transformer \ | |
decoder for state-of-the-art optical character recognition (OCR) on \ | |
single-text line images. This particular model is fine-tuned on IAM, \ | |
a dataset of annotated handwritten images." | |
article = "<p style='text-align: center'><a target='_blank' href='https://arxiv.org/abs/2109.10282'>Transformer Optical Character Recognition with Pre-trained Models</a> | <a target='_blank' href='https://github.com/microsoft/unilm/tree/master/trocr'>Github Repo</a></p>" | |
iface = gr.Interface(fn=process_image, | |
inputs=gr.inputs.Image(type="pil"), | |
outputs=gr.outputs.Textbox(), | |
title=title, | |
description=description, | |
article=article) | |
iface.launch(debug=False) |