vigneshv commited on
Commit
212a6ae
·
1 Parent(s): 4b71bcf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -20
app.py CHANGED
@@ -5,32 +5,20 @@ from PIL import Image
5
 
6
  processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
7
  model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
8
-
9
- # load image examples
10
- urls = ['https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg', 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSoolxi9yWGAT5SLZShv8vVd0bz47UWRzQC19fDTeE8GmGv_Rn-PCF1pP1rrUx8kOjA4gg&usqp=CAU',
11
- 'https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRNYtTuSBpZPV_nkBYPMFwVVD9asZOPgHww4epu9EqWgDmXW--sE2o8og40ZfDGo87j5w&usqp=CAU']
12
- for idx, url in enumerate(urls):
13
- image = Image.open(requests.get(url, stream=True).raw)
14
- image.save(f"image_{idx}.png")
15
-
16
  def process_image(image):
17
- # prepare image
18
  pixel_values = processor(image, return_tensors="pt").pixel_values
19
-
20
- # generate (no beam search)
21
  generated_ids = model.generate(pixel_values)
22
-
23
- # decode
24
  generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
25
-
26
  return generated_text
27
 
28
- title = "Interactive demo: TrOCR"
29
- description = "Demo for Microsoft's TrOCR, an encoder-decoder model consisting of an image Transformer encoder and a text Transformer decoder for state-of-the-art optical character recognition (OCR) on single-text line images. This particular model is fine-tuned on IAM, a dataset of annotated handwritten images. To use it, simply upload a (single-text line) image or use one of the example images below and click 'submit'. Results will show up in a few seconds."
30
- article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>TrOCR: Transformer-based Optical Character Recognition with Pre-trained Models</a> | <a href='https://github.com/microsoft/unilm/tree/master/trocr'>Github Repo</a></p>"
31
- examples =[["image_0.png"], ["image_1.png"], ["image_2.png"]]
32
-
33
- #css = """.output_image, .input_image {height: 600px !important}"""
 
34
 
35
  iface = gr.Interface(fn=process_image,
36
  inputs=gr.inputs.Image(type="pil"),
 
5
 
6
  processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-handwritten")
7
  model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-handwritten")
8
+ # 2 cpu and 16gib ram
 
 
 
 
 
 
 
9
  def process_image(image):
 
10
  pixel_values = processor(image, return_tensors="pt").pixel_values
 
 
11
  generated_ids = model.generate(pixel_values)
 
 
12
  generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
 
13
  return generated_text
14
 
15
+ title = "Transforme(encoder-decoder) based Text OCR"
16
+ description = "Demo for Microsoft's TrOCR, an encoder-decoder model \
17
+ consisting of an image Transformer encoder and a text Transformer \
18
+ decoder for state-of-the-art optical character recognition (OCR) on \
19
+ single-text line images. This particular model is fine-tuned on IAM, \
20
+ a dataset of annotated handwritten images.
21
+ article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2109.10282'>Transformer Optical Character Recognition with Pre-trained Models</a> | <a href='https://github.com/microsoft/unilm/tree/master/trocr'>Github Repo</a></p>"
22
 
23
  iface = gr.Interface(fn=process_image,
24
  inputs=gr.inputs.Image(type="pil"),