import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM # Load the GPT-NeoX model and tokenizer tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neox-20b") # Define system instructions SYSTEM_INSTRUCTIONS = ( "You are a helpful assistant specializing in gaming system instructions. " "Follow all commands precisely. Provide step-by-step details for each task." ) # Define the function for querying the model def generate_response(user_input): # Prepend the system instructions to the user's input prompt = SYSTEM_INSTRUCTIONS + "\nUser: " + user_input + "\nAssistant:" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_length=300, do_sample=True) response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response.split("Assistant:")[-1].strip() # Create a Gradio interface interface = gr.Interface(fn=generate_response, inputs="text", outputs="text") interface.launch()