File size: 40,248 Bytes
0176a51
 
19b4a42
0176a51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0175ee9
0176a51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19b4a42
0176a51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77e99d6
fce2987
77e99d6
ab3aadf
77e99d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
from __future__ import annotations

import spaces
import torch
from PIL import Image
from einops import rearrange
from torchvision.transforms.v2 import (
    Compose,
    Resize,
    InterpolationMode,
    ToImage,
    ToDtype,
    Normalize,
)

from transformers import CodeGenTokenizerFast as Tokenizer
from accelerate import init_empty_weights, load_checkpoint_and_dispatch
import re

import math
from typing import Optional

from transformers import PretrainedConfig


import math
from dataclasses import dataclass, field
from typing import Any, Dict, Optional, Tuple, Union

import torch
import torch.nn as nn
from einops import rearrange, repeat
from transformers import PretrainedConfig, PreTrainedModel
from transformers.activations import ACT2FN
from transformers.modeling_outputs import CausalLMOutputWithPast

pad_input, unpad_input = None, None
FlashRotaryEmbedding = None
FlashSelfAttention, FlashCrossAttention = None, None
FusedDense = None

if torch.cuda.is_available():
    DEVICE = "cuda"
    DTYPE = torch.float16
else:
    DEVICE = "cpu"
    DTYPE = torch.float32


class PhiConfig(PretrainedConfig):
    """Phi configuration."""

    model_type = "phi-msft"
    attribute_map = {
        "max_position_embeddings": "n_positions",
        "hidden_size": "n_embd",
        "num_attention_heads": "n_head",
        "num_hidden_layers": "n_layer",
    }

    def __init__(
        self,
        vocab_size: int = 50304,
        n_positions: int = 2048,
        n_embd: int = 1024,
        n_layer: int = 20,
        n_inner: Optional[int] = None,
        n_head: int = 16,
        n_head_kv: Optional[int] = None,
        rotary_dim: Optional[int] = 32,
        activation_function: Optional[str] = "gelu_new",
        flash_attn: bool = False,
        flash_rotary: bool = False,
        fused_dense: bool = False,
        attn_pdrop: float = 0.0,
        embd_pdrop: float = 0.0,
        resid_pdrop: float = 0.0,
        layer_norm_epsilon: float = 1e-5,
        initializer_range: float = 0.02,
        tie_word_embeddings: bool = False,
        pad_vocab_size_multiple: int = 64,
        gradient_checkpointing: bool = False,
        **kwargs,
    ) -> None:
        self.vocab_size = int(
            math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple
        )
        self.n_positions = n_positions
        self.n_embd = n_embd
        self.n_layer = n_layer
        self.n_inner = n_inner
        self.n_head = n_head
        self.n_head_kv = n_head_kv
        self.rotary_dim = min(rotary_dim, n_embd // n_head)
        self.activation_function = activation_function
        self.flash_attn = flash_attn
        self.flash_rotary = flash_rotary
        self.fused_dense = fused_dense
        self.attn_pdrop = attn_pdrop
        self.embd_pdrop = embd_pdrop
        self.resid_pdrop = resid_pdrop
        self.layer_norm_epsilon = layer_norm_epsilon
        self.initializer_range = initializer_range
        self.gradient_checkpointing = gradient_checkpointing

        super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)


@dataclass
class InferenceParams:
    """Inference parameters passed to model to efficiently calculate
    and store context during inference.

    Reference:
        https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py.

    Args:
        max_seqlen: Maximum sequence length.
        max_batch_size: Maximum batch size.
        seqlen_offset: Sequence length offset.
        batch_size_offset: Batch size offset.
        key_value_memory_dict: Key value memory dictionary.
        lengths_per_sample: Lengths per sample.

    """

    max_seqlen: int = field(metadata={"help": "Maximum sequence length."})

    max_batch_size: int = field(metadata={"help": "Maximum batch size."})

    seqlen_offset: int = field(default=0, metadata={"help": "Sequence length offset."})

    batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."})

    key_value_memory_dict: Dict[str, Any] = field(
        default_factory=dict, metadata={"help": "Key value memory dictionary."}
    )

    lengths_per_sample: torch.Tensor = field(
        default=None, metadata={"help": "Lengths per sample."}
    )


class Embedding(nn.Module):
    """Token embedding with dropout."""

    def __init__(self, config: PretrainedConfig) -> None:
        super().__init__()

        self.wte = nn.Embedding(config.vocab_size, config.n_embd)
        self.drop = nn.Dropout(config.embd_pdrop)

    def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_shape[-1])

        hidden_states = self.wte(input_ids)
        hidden_states = self.drop(hidden_states)

        return hidden_states


# @torch.compile
def _apply_rotary_emb(
    x: torch.FloatTensor,
    cos: torch.FloatTensor,
    sin: torch.FloatTensor,
) -> torch.FloatTensor:
    _, seqlen, _, _ = x.shape
    _, rotary_dim = cos.shape
    rotary_dim *= 2

    x_rot = x[:, :, :, :rotary_dim]
    x_pass = x[:, :, :, rotary_dim:]

    x1, x2 = x_rot.chunk(2, dim=-1)
    c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(
        sin[:seqlen], "s d -> s 1 d"
    )
    x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]]

    x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], axis=-1).to(x.dtype)

    return torch.cat([x_rot, x_pass], axis=-1)


# @torch.compile
def _apply_rotary_emb_kv(
    kv: torch.FloatTensor,
    cos: torch.FloatTensor,
    sin: torch.FloatTensor,
    cos_k: Optional[torch.FloatTensor] = None,
    sin_k: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
    _, seqlen, _, _, _ = kv.shape
    _, rotary_dim = cos.shape
    rotary_dim *= 2

    k_rot = kv[:, :, 0, :, :rotary_dim]
    k_pass = kv[:, :, 0, :, rotary_dim:]

    k1, k2 = k_rot.chunk(2, dim=-1)
    c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(
        sin[:seqlen], "s d -> s 1 d"
    )
    k1, k2, c, s = [t.to(dtype=torch.float32) for t in [k1, k2, c, s]]

    k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(kv.dtype)

    return torch.cat(
        [
            torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
            kv[:, :, 1:2, :, :],
        ],
        axis=2,
    )


# @torch.compile
def _apply_rotary_emb_qkv(
    qkv: torch.FloatTensor,
    cos: torch.FloatTensor,
    sin: torch.FloatTensor,
    cos_k: Optional[torch.FloatTensor] = None,
    sin_k: Optional[torch.FloatTensor] = None,
) -> torch.FloatTensor:
    _, seqlen, _, _, _ = qkv.shape
    _, rotary_dim = cos.shape
    rotary_dim *= 2

    q_rot = qkv[:, :, 0, :, :rotary_dim]
    q_pass = qkv[:, :, 0, :, rotary_dim:]

    k_rot = qkv[:, :, 1, :, :rotary_dim]
    k_pass = qkv[:, :, 1, :, rotary_dim:]

    q1, q2 = q_rot.chunk(2, dim=-1)
    k1, k2 = k_rot.chunk(2, dim=-1)
    c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(
        sin[:seqlen], "s d -> s 1 d"
    )
    q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]

    q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
    k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)

    return torch.cat(
        [
            torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
            torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
            qkv[:, :, 2:3, :, :],
        ],
        axis=2,
    )


class RotaryEmbedding(nn.Module):
    """Rotary positional embedding (RoPE).

    Reference:
        RoFormer: Enhanced Transformer with Rotary Position Embedding.
        https://arxiv.org/pdf/2104.09864.pdf.

    """

    def __init__(
        self,
        dim: int,
        base: int = 10000,
        scale_base: Optional[float] = None,
        pos_idx_in_fp32: bool = True,
        max_position_embeddings: int = 2048,
        device: Optional[str] = None,
        **kwargs,
    ) -> None:
        super().__init__()

        if scale_base is not None:
            raise NotImplementedError

        self.dim = dim
        self.base = float(base)
        self.scale_base = scale_base
        self.pos_idx_in_fp32 = pos_idx_in_fp32
        self.max_position_embeddings = max_position_embeddings
        self.device = device

        # Generate and save the inverse frequency buffer (non-trainable)
        inv_freq = self._compute_inv_freq(device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)

        # Generate and save the scale buffer (non-trainable)
        scale = (
            (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim)
            / (1.4 * dim)
            if scale_base is not None
            else None
        )
        self.register_buffer("scale", scale, persistent=False)

        # Initialize cached attributes since ONNX can't rely on dynamic initialization
        self._update_cos_sin_cache(
            max_position_embeddings, device=device, dtype=torch.float32
        )

    def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor:
        return 1.0 / (
            self.base
            ** (
                torch.arange(0, self.dim, 2, device=device, dtype=torch.float32)
                / self.dim
            )
        )

    def _update_cos_sin_cache(
        self,
        seqlen: int,
        device: Optional[str] = None,
        dtype: Optional[torch.dtype] = None,
    ) -> None:
        self._seq_len_cached = seqlen

        # fp32 is preferred since the output of `torch.arange` can be quite large
        # and bf16 would lose a lot of precision
        if self.pos_idx_in_fp32:
            t = torch.arange(seqlen, device=device, dtype=torch.float32)
            if self.inv_freq.dtype != torch.float32:
                inv_freq = self._compute_inv_freq(device=device)
            else:
                inv_freq = self.inv_freq
        else:
            t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
            inv_freq = self.inv_freq

        # `torch.outer` is preferred since `torch.einsum` converts from fp32 to fp16 if used with AMP
        freqs = torch.outer(t, inv_freq)
        if self.scale is None:
            self._cos_cached = torch.cos(freqs).to(dtype)
            self._sin_cached = torch.sin(freqs).to(dtype)
        else:
            power = (
                torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
                - seqlen // 2
            ) / self.scale_base
            scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")

            # Force the scale multiplication to happen in fp32
            self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
            self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
            self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
            self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)

    def forward(
        self,
        qkv: torch.Tensor,
        kv: Optional[torch.Tensor] = None,
        seqlen_offset: int = 0,
        **kwargs,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        if (
            self._seq_len_cached < qkv.shape[1] + seqlen_offset
            or self._cos_cached.device != qkv.device
            or self._cos_cached.dtype != qkv.dtype
            or (self.training and self._cos_cached.is_inference())
        ):
            self._update_cos_sin_cache(
                qkv.shape[1] + seqlen_offset, device=qkv.device, dtype=qkv.dtype
            )

        if kv is None:
            return _apply_rotary_emb_qkv(
                qkv,
                self._cos_cached[seqlen_offset:],
                self._sin_cached[seqlen_offset:],
            )
        else:
            q = _apply_rotary_emb(
                qkv,
                self._cos_cached[seqlen_offset:],
                self._sin_cached[seqlen_offset:],
            )
            kv = _apply_rotary_emb_kv(
                kv,
                self._cos_cached[seqlen_offset:],
                self._sin_cached[seqlen_offset:],
            )

            return q, kv


class MLP(nn.Module):
    """Multi-Layer Perceptron.

    Reference:
        Attention Is All You Need.
        https://arxiv.org/pdf/1706.03762.pdf.

    """

    def __init__(
        self,
        config: PretrainedConfig,
        n_inner: Optional[int] = None,
        act_fn: Optional[str] = None,
    ) -> None:
        super().__init__()

        act_fn = config.activation_function if act_fn is None else act_fn

        n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
        n_inner = n_inner if n_inner is not None else 4 * config.n_embd

        self.fc1 = nn.Linear(config.n_embd, n_inner)
        self.fc2 = nn.Linear(n_inner, config.n_embd)
        self.act = ACT2FN[act_fn]

    def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
        hidden_states = self.fc1(hidden_states)
        hidden_states = self.act(hidden_states)
        hidden_states = self.fc2(hidden_states)

        return hidden_states


class SelfAttention(nn.Module):
    """Self-attention layer (compatible with PyTorch).

    Reference:
        https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.

    """

    def __init__(
        self,
        causal: bool = True,
        softmax_scale: Optional[float] = None,
        attention_dropout: float = 0.0,
    ) -> None:
        super().__init__()

        self.causal = causal
        self.softmax_scale = softmax_scale
        self.drop = nn.Dropout(attention_dropout)

    @torch.autocast("cpu", enabled=False)
    @torch.autocast("cuda", enabled=False)
    def forward(
        self,
        qkv: torch.FloatTensor,
        causal: bool = None,
        key_padding_mask: Optional[torch.BoolTensor] = None,
        **kwargs,
    ) -> torch.FloatTensor:
        batch_size, seqlen = qkv.shape[0], qkv.shape[1]
        q, k, v = qkv.unbind(dim=2)

        q = q.to(torch.float32)
        k = k.to(torch.float32)

        causal = self.causal if causal is None else causal
        softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])

        # Autocast is manually disabled to avoid `torch.einsum` performing the operation
        # using float16, which might lead to overflow
        scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)

        if key_padding_mask is not None:
            padding_mask = torch.full(
                (batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device
            )
            padding_mask.masked_fill_(key_padding_mask, 0.0)

            scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")

        if causal:
            causal_mask = torch.triu(
                torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1
            )
            scores = scores + causal_mask.to(dtype=scores.dtype)

        attention = torch.softmax(scores, dim=-1).to(v.dtype)
        attention = self.drop(attention)

        output = torch.einsum("bhts,bshd->bthd", attention, v)

        return output


class CrossAttention(nn.Module):
    """Cross-attention layer (compatible with PyTorch).

    Reference:
        https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.

    """

    def __init__(
        self,
        causal: bool = True,
        softmax_scale: Optional[float] = None,
        attention_dropout: float = 0.0,
    ) -> None:
        super().__init__()

        self.causal = causal
        self.softmax_scale = softmax_scale
        self.drop = nn.Dropout(attention_dropout)

    @torch.autocast("cpu", enabled=False)
    @torch.autocast("cuda", enabled=False)
    def forward(
        self,
        q: torch.FloatTensor,
        kv: torch.FloatTensor,
        causal: bool = None,
        key_padding_mask: Optional[torch.BoolTensor] = None,
        **kwargs,
    ) -> torch.FloatTensor:
        batch_size, seqlen_q = q.shape[0], q.shape[1]
        seqlen_k = kv.shape[1]

        if kv.shape[3] != q.shape[2]:
            kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
        k, v = kv.unbind(dim=2)

        q = q.to(torch.float32)
        k = k.to(torch.float32)

        causal = self.causal if causal is None else causal
        softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])

        # Autocast is manually disabled to avoid `torch.einsum` performing the operation
        # using float16, which might lead to overflow
        scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)

        if key_padding_mask is not None:
            padding_mask = torch.full(
                (batch_size, seqlen_k),
                -10000.0,
                dtype=scores.dtype,
                device=scores.device,
            )
            padding_mask.masked_fill_(key_padding_mask, 0.0)

            scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")

        if causal:
            rows = rearrange(
                torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1"
            )
            cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
            causal_mask = cols > rows + seqlen_k - seqlen_q

            scores = scores.masked_fill(causal_mask, -10000.0)

        attention = torch.softmax(scores, dim=-1).to(v.dtype)
        attention = self.drop(attention)

        output = torch.einsum("bhts,bshd->bthd", attention, v)

        return output


def _find_mha_dims(
    config: PretrainedConfig,
    n_head: Optional[int] = None,
    n_head_kv: Optional[int] = None,
    head_dim: Optional[int] = None,
) -> Tuple[int, int]:
    if n_head is None and head_dim is None:
        head_dim = config.n_embd // config.n_head
        n_head = config.n_head
    elif n_head is None or head_dim is None:
        raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")

    if n_head_kv is None:
        n_head_kv = getattr(config, "n_head_kv", None) or n_head

    return n_head, n_head_kv, head_dim


def _update_kv_cache(
    kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int
) -> torch.FloatTensor:
    num_heads, head_dim = kv.shape[-2:]

    if layer_idx not in inference_params.key_value_memory_dict:
        inference_params.key_value_memory_dict[layer_idx] = torch.empty(
            inference_params.max_batch_size,
            inference_params.max_seqlen,
            2,
            num_heads,
            head_dim,
            dtype=kv.dtype,
            device=kv.device,
        )

    batch_start = inference_params.batch_size_offset
    batch_end = batch_start + kv.shape[0]

    sequence_start = inference_params.seqlen_offset
    sequence_end = sequence_start + kv.shape[1]

    # When the current sequence length is equal to or larger than the maximum sequence length,
    # we need to concatenate the current `kv` with the cached `kv` to expand its length
    if sequence_end >= inference_params.max_seqlen:
        inference_params.key_value_memory_dict[layer_idx] = torch.concatenate(
            (inference_params.key_value_memory_dict[layer_idx], kv), dim=1
        )

    inference_params.key_value_memory_dict[layer_idx][
        batch_start:batch_end, sequence_start:sequence_end, ...
    ] = kv
    kv = inference_params.key_value_memory_dict[layer_idx][
        batch_start:batch_end, :sequence_end, ...
    ]

    return kv


class MHA(nn.Module):
    """Multi-head attention layer."""

    def __init__(
        self,
        config: PretrainedConfig,
        dtype: Optional[torch.dtype] = None,
        device: Optional[str] = None,
        rotary_dim: Optional[int] = None,
        rotary_base: float = 10000.0,
        rotary_scale_base: Optional[float] = None,
        n_head: Optional[int] = None,
        n_head_kv: Optional[int] = None,
        head_dim: Optional[int] = None,
        bias: bool = True,
        causal: bool = True,
        softmax_scale: Optional[float] = None,
        layer_idx: Optional[int] = None,
        return_residual: bool = False,
        checkpointing: bool = False,
    ) -> None:
        super().__init__()

        # Rotary embedding
        self.rotary_dim = (
            rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
        )

        if self.rotary_dim > 0:
            self.rotary_emb = RotaryEmbedding(
                self.rotary_dim,
                base=rotary_base,
                scale_base=rotary_scale_base,
                device=device,
                max_position_embeddings=config.n_positions,
            )

        # MLP
        self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(
            config, n_head=n_head, n_head_kv=n_head_kv, head_dim=head_dim
        )
        op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv)
        hidden_size = config.n_embd

        linear_cls = FusedDense if config.fused_dense else nn.Linear
        if linear_cls is None:
            linear_cls = nn.Linear

        self.Wqkv = linear_cls(
            hidden_size, op_size, bias=bias, device=device, dtype=dtype
        )
        self.out_proj = linear_cls(
            hidden_size, hidden_size, bias=bias, device=device, dtype=dtype
        )

        # Attention
        self.inner_attn = SelfAttention(
            causal=causal,
            softmax_scale=softmax_scale,
            attention_dropout=config.attn_pdrop,
        )
        self.inner_cross_attn = CrossAttention(
            causal=causal,
            softmax_scale=softmax_scale,
            attention_dropout=config.attn_pdrop,
        )

        self.layer_idx = layer_idx
        self.return_residual = return_residual
        self.checkpointing = checkpointing

    def _forward_self_attn(
        self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor]
    ) -> torch.FloatTensor:
        qkv = self.Wqkv(x)
        qkv = rearrange(
            qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim
        )

        if self.rotary_dim > 0:
            qkv = self.rotary_emb(qkv)

        if self.checkpointing:
            return torch.utils.checkpoint.checkpoint(
                self.inner_attn, qkv, key_padding_mask=key_padding_mask
            )

        return self.inner_attn(qkv, key_padding_mask=key_padding_mask)

    def _forward_cross_attn(
        self,
        x: torch.FloatTensor,
        past_key_values: Optional[InferenceParams],
        key_padding_mask: Optional[torch.BoolTensor],
    ) -> torch.FloatTensor:
        batch_size = x.shape[0]

        qkv = self.Wqkv(x)

        q = qkv[..., : self.n_head * self.head_dim]
        q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)

        kv = qkv[..., self.n_head * self.head_dim :]
        kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)

        seqlen_offset = (
            past_key_values.seqlen_offset if past_key_values is not None else 0
        )
        causal = None if seqlen_offset == 0 else False
        if self.rotary_dim > 0:
            q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)

        if past_key_values is not None:
            kv = _update_kv_cache(kv, past_key_values, self.layer_idx)

        if self.checkpointing:
            return torch.utils.checkpoint.checkpoint(
                self.inner_cross_attn,
                q,
                kv,
                key_padding_mask=key_padding_mask,
                causal=causal,
            )

        return self.inner_cross_attn(
            q, kv, key_padding_mask=key_padding_mask, causal=causal
        )

    def forward(
        self,
        x: torch.FloatTensor,
        past_key_values: Optional[InferenceParams] = None,
        attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
        **kwargs,
    ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
        if attention_mask is not None:
            attention_mask = attention_mask.bool()
        else:
            attention_mask = None

        # MHA
        if self.n_head == self.n_head_kv:
            if past_key_values is None:
                # If `past_key_values` are not supplied, we run self-attention
                attn_output = self._forward_self_attn(x, attention_mask)
            else:
                # If `past_key_values` are supplied, it means that we might have cached values and
                # could take advantage of cross-attention
                attn_output = self._forward_cross_attn(
                    x, past_key_values, attention_mask
                )
        # MQA / GQA
        else:
            # Regardless of `past_key_values` being supplied or not, it always use cross-attention
            # because `q` and `kv` lengths might be different
            attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)

        output = rearrange(attn_output, "... h d -> ... (h d)")
        output = self.out_proj(output)

        return output if not self.return_residual else (output, x)


class ParallelBlock(nn.Module):
    """Parallel block.

    This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).

    """

    def __init__(
        self,
        config: PretrainedConfig,
        block_idx: Optional[int] = None,
    ) -> None:
        super().__init__()

        self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
        self.resid_dropout = nn.Dropout(config.resid_pdrop)
        self.block_idx = block_idx

        self.mixer = MHA(config, layer_idx=block_idx)
        self.mlp = MLP(config)

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
        attention_mask: Optional[torch.BoolTensor] = None,
        **kwargs,
    ) -> torch.FloatTensor:
        residual = hidden_states
        hidden_states = self.ln(hidden_states)

        attn_outputs = self.mixer(
            hidden_states,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
        )
        if isinstance(attn_outputs, tuple):
            attn_outputs = attn_outputs[0]

        attn_outputs = self.resid_dropout(attn_outputs)
        feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))

        hidden_states = attn_outputs + feed_forward_hidden_states + residual

        return hidden_states


class CausalLMHead(nn.Module):
    """Causal Language Modeling head.

    Reference:
        Improving Language Understanding by Generative Pre-Training.
        https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.

    """

    def __init__(self, config: PretrainedConfig) -> None:
        super().__init__()

        self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
        self.linear = nn.Linear(config.n_embd, config.vocab_size)

    def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
        hidden_states = self.ln(hidden_states)
        logits = self.linear(hidden_states).to(torch.float32)

        return logits


class CausalLMLoss(nn.Module):
    """Causal Language Modeling loss.

    Reference:
        Improving Language Understanding by Generative Pre-Training.
        https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.

    """

    def __init__(self, shift_labels: bool = True) -> None:
        super().__init__()

        self.shift_labels = shift_labels
        self.loss_fct = nn.CrossEntropyLoss()

    def forward(
        self, logits: torch.FloatTensor, labels: torch.LongTensor
    ) -> torch.FloatTensor:
        if self.shift_labels:
            logits = logits[..., :-1, :].contiguous()
            labels = labels[..., 1:].contiguous()

        loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))

        return loss


class PhiPreTrainedModel(PreTrainedModel):
    """Phi pre-trained model."""

    config_class = PhiConfig
    base_model_prefix = "transformer"
    supports_gradient_checkpointing = False
    _no_split_modules = ["ParallelBlock"]

    def __init__(self, *inputs, **kwargs) -> None:
        super().__init__(*inputs, **kwargs)

    def prepare_inputs_for_generation(
        self,
        input_ids: torch.LongTensor = None,
        inputs_embeds: torch.FloatTensor = None,
        past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
        attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
        **kwargs,
    ) -> Dict[str, Any]:
        if inputs_embeds is not None:
            max_batch_size = inputs_embeds.shape[0]
            seqlen_offset = inputs_embeds.shape[1] + input_ids.shape[1] - 2
        elif input_ids is not None:
            max_batch_size = input_ids.shape[0]
            seqlen_offset = input_ids.shape[1] - 1
        else:
            raise ValueError(
                "You have to specify either `input_ids` or `inputs_embeds`."
            )

        args = {}

        if past_key_values is None or not (
            isinstance(past_key_values, InferenceParams)
        ):
            past_key_values = InferenceParams(
                max_seqlen=self.config.n_positions,
                max_batch_size=max_batch_size,
                seqlen_offset=0,
                batch_size_offset=0,
                key_value_memory_dict={},
                lengths_per_sample=None,
            )
            if inputs_embeds is not None:
                args = {"inputs_embeds": inputs_embeds}
            elif input_ids is not None:
                args = {"input_ids": input_ids}
            else:
                raise ValueError(
                    "You have to specify either `input_ids` or `inputs_embeds`."
                )
        else:
            # Assume that `past_key_values` has cached all tokens up to the last token in `input_ids`
            past_key_values.seqlen_offset = seqlen_offset
            input_ids = input_ids[:, -1].unsqueeze(-1)
            args = {"input_ids": input_ids}

        return {
            **args,
            "past_key_values": past_key_values,
            "attention_mask": attention_mask,
        }


class PhiModel(PhiPreTrainedModel):
    """Phi model."""

    _keys_to_ignore_on_load_missing = [""]
    _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]

    def __init__(self, config: PhiConfig) -> None:
        super().__init__(config)

        self.embd = Embedding(config)
        self.h = nn.ModuleList(
            [ParallelBlock(config, block_idx=i) for i in range(config.n_layer)]
        )
        self.gradient_checkpointing = config.gradient_checkpointing
        self.post_init()

    def get_input_embeddings(self) -> nn.Embedding:
        return self.embd.wte

    def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
        self.embd.wte = new_embeddings

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        inputs_embeds: torch.FloatTensor = None,
        past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
        attention_mask: Optional[torch.BoolTensor] = None,
    ) -> torch.FloatTensor:
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError(
                "You cannot specify both `input_ids` and `inputs_embeds` at the same time."
            )
        elif input_ids is None and inputs_embeds is None:
            raise ValueError(
                "You have to specify either `input_ids` or `inputs_embeds`."
            )
        elif input_ids is not None:
            hidden_states = self.embd(input_ids)
        else:
            hidden_states = inputs_embeds

        for layer in self.h:
            if self.gradient_checkpointing:
                hidden_states = torch.utils.checkpoint.checkpoint(
                    layer.__call__,
                    hidden_states,
                    past_key_values,
                    attention_mask,
                    use_reentrant=True,
                )
            else:
                hidden_states = layer(
                    hidden_states,
                    past_key_values=past_key_values,
                    attention_mask=attention_mask,
                )

        return hidden_states


class PhiForCausalLM(PhiPreTrainedModel):
    """Phi for Causal Language Modeling."""

    _keys_to_ignore_on_load_missing = [""]
    _keys_to_ignore_on_load_unexpected = [
        r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"
    ]

    def __init__(self, config: PhiConfig) -> None:
        super().__init__(config)

        self.transformer = PhiModel(config)
        self.lm_head = CausalLMHead(config)
        self.loss = CausalLMLoss()

        self.post_init()

    def get_output_embeddings(self) -> nn.Linear:
        return self.lm_head.linear

    def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
        self.lm_head.linear = new_embeddings

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        inputs_embeds: torch.FloatTensor = None,
        past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
        attention_mask: Optional[torch.BoolTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        **kwargs,
    ) -> CausalLMOutputWithPast:
        hidden_states = self.transformer(
            input_ids,
            inputs_embeds,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
        )
        lm_logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            loss = self.loss(lm_logits, labels)

        return CausalLMOutputWithPast(
            loss=loss, logits=lm_logits, past_key_values=past_key_values
        )


class VisionEncoder(nn.Module):
    def __init__(self, model_path: str = "model") -> None:
        super().__init__()
        self.model = torch.jit.load(f"{model_path}/vision.pt").to(DEVICE, dtype=DTYPE)
        self.preprocess = Compose(
            [
                Resize(size=(384, 384), interpolation=InterpolationMode.BICUBIC),
                ToImage(),
                ToDtype(torch.float32, scale=True),
                Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
            ]
        )

    def __call__(self, image: Image) -> torch.Tensor:
        with torch.no_grad():
            image_vec = self.preprocess(image.convert("RGB")).unsqueeze(0)
            image_vec = image_vec[:, :, :-6, :-6]
            image_vec = rearrange(
                image_vec, "b c (h p1) (w p2) -> b (h w) (c p1 p2)", p1=14, p2=14
            )

            image_vec = image_vec.to(DEVICE, dtype=DTYPE)
            return self.model(image_vec)


class TextModel(nn.Module):
    def __init__(self, model_path: str = "model") -> None:
        super().__init__()
        self.tokenizer = Tokenizer.from_pretrained(f"{model_path}/tokenizer")
        phi_config = PhiConfig.from_pretrained(f"{model_path}/text_model_cfg.json")

        with init_empty_weights():
            self.model = PhiForCausalLM(phi_config)

        self.model = load_checkpoint_and_dispatch(
            self.model,
            f"{model_path}/text_model.pt",
            device_map={"": DEVICE},
            dtype=DTYPE,
        )

        self.text_emb = self.model.get_input_embeddings()

    def input_embeds(self, prompt, image_embeds):
        embeds = []

        def _add_toks(toks):
            embeds.append(self.text_emb(toks))

        def _tokenize(txt):
            return self.tokenizer(
                txt, return_tensors="pt", add_special_tokens=False
            ).input_ids.to(self.model.device)

        # Add BOS token
        _add_toks(
            torch.tensor([[self.tokenizer.bos_token_id]], device=self.model.device)
        )

        if "<image>" not in prompt:
            embeds.append(self.text_emb(_tokenize(prompt)))
        else:
            assert prompt.count("<image>") == 1
            before, after = prompt.split("<image>")
            embeds.append(self.text_emb(_tokenize(f"{before}<image>")))
            embeds.append(image_embeds.to(self.model.device))
            embeds.append(self.text_emb(_tokenize(f"</image>{after}")))

        return torch.cat(embeds, dim=1)

    def generate(
        self, image_embeds, prompt, eos_text="Human:", max_new_tokens=128, **kwargs
    ):
        eos_tokens = self.tokenizer(eos_text, add_special_tokens=False)[0].ids

        generate_config = {
            "eos_token_id": eos_tokens,
            "bos_token_id": self.tokenizer.bos_token_id,
            "pad_token_id": self.tokenizer.eos_token_id,
            "max_new_tokens": max_new_tokens,
            **kwargs,
        }

        with torch.no_grad():
            inputs_embeds = self.input_embeds(prompt, image_embeds)
            output_ids = self.model.generate(
                inputs_embeds=inputs_embeds, **generate_config
            )

        return self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)

    def answer_question(self, image_embeds, question, **kwargs):
        prompt = f"<image>\n\nQuestion: {question}\n\nAnswer:"
        answer = self.generate(
            image_embeds,
            prompt,
            eos_text="<END>",
            max_new_tokens=128,
            **kwargs,
        )[0]

        return re.sub("<$", "", re.sub("END$", "", answer)).strip()


##### GRADIO INTERFACE #####

import gradio as gr
from huggingface_hub import snapshot_download
from threading import Thread
from transformers import TextIteratorStreamer
import hashlib
import os

model_path = snapshot_download("vikhyatk/moondream1", revision="3b9dfe7f7fc461b17aa5f16aadefe60cfc2150c9")

vision_encoder = VisionEncoder(model_path).to(DEVICE, dtype=DTYPE)
text_model = TextModel(model_path).to(DEVICE, dtype=DTYPE)


def cached_vision_encoder(image):
    # Calculate checksum of the image
    image_hash = hashlib.sha256(image.tobytes()).hexdigest()

    # Check if `image_encoder_cache/{image_hash}.pt` exists, if so load and return it.
    # Otherwise, save the encoded image to `image_encoder_cache/{image_hash}.pt` and return it.
    cache_path = f"image_encoder_cache/{image_hash}.pt"
    if os.path.exists(cache_path):
        return torch.load(cache_path).to(DEVICE, dtype=DTYPE)
    else:
        image_vec = vision_encoder(image).to("cpu", dtype=torch.float16)
        os.makedirs("image_encoder_cache", exist_ok=True)
        torch.save(image_vec, cache_path)
        return image_vec.to(DEVICE, dtype=DTYPE)


@spaces.GPU(duration=10)
def answer_question(image, question):
    yield "Encoding image..."

    streamer = TextIteratorStreamer(text_model.tokenizer, skip_special_tokens=True)
    generation_kwargs = dict(
        image_embeds=cached_vision_encoder(image), question=question, streamer=streamer
    )
    thread = Thread(target=text_model.answer_question, kwargs=generation_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        if len(buffer) > 1:
            yield re.sub("<$", "", re.sub("END$", "", buffer))


with gr.Blocks() as demo:
    gr.HTML("<h1 class='gradio-heading'><center>πŸŒ” moondream1</center></h1>")
    gr.HTML(
        "<center><p class='gradio-sub-heading'>moondream1 is an older version of the moondream model. Check out the <a href='https://huggingface.co/spaces/vikhyatk/moondream2'>moondream2</a> space for an improved version.</p></center>"
    )
    with gr.Group():
        with gr.Row():
            prompt = gr.Textbox(
                label="Question", placeholder="e.g. What is this?", scale=4
            )
            submit = gr.Button(
                "Submit",
                scale=1,
            )
        with gr.Row():
            img = gr.Image(type="pil", label="Upload or Drag an Image")
            output = gr.TextArea(label="Answer")

    # handling events
    submit.click(answer_question, [img, prompt], output)
    prompt.submit(answer_question, [img, prompt], output)

demo.queue().launch(debug=True)