import streamlit as st from streamlit_webrtc import webrtc_streamer, VideoProcessorBase import av from transformers import DetrImageProcessor, DetrForObjectDetection, TrOCRProcessor, VisionEncoderDecoderModel from PIL import Image, ImageDraw import numpy as np import torch # Step 1: Load Models # DETR for object detection detr_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50") detr_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50") # TrOCR for text recognition trocr_processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-stage1") trocr_model = VisionEncoderDecoderModel.from_pretrained("microsoft/trocr-base-stage1") # Authorized car database for verification authorized_cars = {"KA01AB1234", "MH12XY5678", "DL8CAF9090", "CH01AG2863"} # Example data # Step 2: Define Helper Functions def detect_license_plate(frame): """ Detect license plates in the frame using DETR. """ pil_image = Image.fromarray(frame) inputs = detr_processor(images=pil_image, return_tensors="pt") outputs = detr_model(**inputs) # Get bounding boxes target_sizes = torch.tensor([pil_image.size[::-1]]) results = detr_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9) return results[0]["boxes"], pil_image def recognize_text_from_plate(cropped_plate): """ Recognize text from the cropped license plate image using TrOCR. """ inputs = trocr_processor(images=cropped_plate, return_tensors="pt") outputs = trocr_model.generate(**inputs) return trocr_processor.batch_decode(outputs, skip_special_tokens=True)[0] def verify_plate(plate_text): """ Check if the recognized plate text exists in the authorized cars database. """ if plate_text in authorized_cars: return f"✅ Access Granted: {plate_text}" else: return f"❌ Access Denied: {plate_text}" # Step 3: Custom Video Processor for WebRTC class LicensePlateProcessor(VideoProcessorBase): """ Custom video processor to handle video frames in real-time. """ def recv(self, frame: av.VideoFrame): frame = frame.to_ndarray(format="bgr24") # Convert frame to NumPy array boxes, pil_image = detect_license_plate(frame) draw = ImageDraw.Draw(pil_image) recognized_plates = [] for box in boxes: # Crop detected license plate cropped_plate = pil_image.crop((box[0], box[1], box[2], box[3])) plate_text = recognize_text_from_plate(cropped_plate) recognized_plates.append(plate_text) # Draw bounding box and label on the image draw.rectangle(box.tolist(), outline="red", width=3) draw.text((box[0], box[1]), plate_text, fill="red") # Convert back to OpenCV format processed_frame = np.array(pil_image) # Log results in Streamlit UI for plate_text in recognized_plates: st.write(verify_plate(plate_text)) return av.VideoFrame.from_ndarray(processed_frame, format="bgr24") # Step 4: Streamlit Interface st.title("Real-Time Car Number Plate Recognition") st.write("This app uses Hugging Face Transformers and WebRTC for real-time processing.") # Start WebRTC Streamer webrtc_streamer( key="plate-recognition", video_processor_factory=LicensePlateProcessor, rtc_configuration={ # Required to ensure WebRTC works across networks "iceServers": [{"urls": ["stun:stun.l.google.com:19302"]}] } )