Spaces:
Paused
Paused
import os | |
import gradio as gr | |
import torch | |
import numpy as np | |
import spaces | |
import random | |
from PIL import Image | |
from glob import glob | |
from pathlib import Path | |
from typing import Optional | |
from diffusers import StableVideoDiffusionPipeline | |
from diffusers.utils import load_image, export_to_video | |
import uuid | |
# from huggingface_hub import hf_hub_download | |
# os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
# HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
# Constants | |
model = "ECNU-CILab/ExVideo-SVD-128f-v1" | |
MAX_SEED = np.iinfo(np.int32).max | |
CSS = """ | |
footer { | |
visibility: hidden; | |
} | |
""" | |
JS = """function () { | |
gradioURL = window.location.href | |
if (!gradioURL.endsWith('?__theme=dark')) { | |
window.location.replace(gradioURL + '?__theme=dark'); | |
} | |
}""" | |
# Ensure model and scheduler are initialized in GPU-enabled function | |
if torch.cuda.is_available(): | |
pipe = StableVideoDiffusionPipeline.from_pretrained( | |
model, | |
torch_dtype=torch.float16, | |
variant="fp16").to("cuda") | |
# function source codes modified from multimodalart/stable-video-diffusion | |
def generate( | |
image: Image, | |
seed: Optional[int] = -1, | |
motion_bucket_id: int = 127, | |
fps_id: int = 6, | |
version: str = "svd_xt", | |
cond_aug: float = 0.02, | |
decoding_t: int = 1, | |
device: str = "cuda", | |
output_folder: str = "outputs", | |
progress=gr.Progress(track_tqdm=True)): | |
if seed == -1: | |
seed = random.randint(0, MAX_SEED) | |
if image.mode == "RGBA": | |
image = image.convert("RGB") | |
generator = torch.manual_seed(seed) | |
os.makedirs(output_folder, exist_ok=True) | |
base_count = len(glob(os.path.join(output_folder, "*.mp4"))) | |
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4") | |
frames = pipe(image, decode_chunk_size=decoding_t, generator=generator, motion_bucket_id=motion_bucket_id, noise_aug_strength=0.1, num_frames=25).frames[0] | |
export_to_video(frames, video_path, fps=fps_id) | |
torch.manual_seed(seed) | |
return video_path, seed | |
def resize_image(image, output_size=(1024, 576)): | |
# Calculate aspect ratios | |
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size | |
image_aspect = image.width / image.height # Aspect ratio of the original image | |
# Resize then crop if the original image is larger | |
if image_aspect > target_aspect: | |
# Resize the image to match the target height, maintaining aspect ratio | |
new_height = output_size[1] | |
new_width = int(new_height * image_aspect) | |
resized_image = image.resize((new_width, new_height), Image.LANCZOS) | |
# Calculate coordinates for cropping | |
left = (new_width - output_size[0]) / 2 | |
top = 0 | |
right = (new_width + output_size[0]) / 2 | |
bottom = output_size[1] | |
else: | |
# Resize the image to match the target width, maintaining aspect ratio | |
new_width = output_size[0] | |
new_height = int(new_width / image_aspect) | |
resized_image = image.resize((new_width, new_height), Image.LANCZOS) | |
# Calculate coordinates for cropping | |
left = 0 | |
top = (new_height - output_size[1]) / 2 | |
right = output_size[0] | |
bottom = (new_height + output_size[1]) / 2 | |
# Crop the image | |
cropped_image = resized_image.crop((left, top, right, bottom)) | |
return cropped_image | |
examples = [ | |
"./train.jpg", | |
"./girl.webp", | |
"./robo.jpg", | |
] | |
# Gradio Interface | |
with gr.Blocks(css=CSS, js=JS, theme="soft") as demo: | |
gr.HTML("<h1><center>Exvideo📽️</center></h1>") | |
gr.HTML("<p><center><a href='https://huggingface.co/ECNU-CILab/ExVideo-SVD-128f-v1'>ExVideo</a> image-to-video generation<br><b>Update</b>: first version</center></p>") | |
with gr.Row(): | |
image = gr.Image(label='Upload Image', height=600, scale=2) | |
video = gr.Video(label="Generated Video", height=600, scale=2) | |
with gr.Accordion("Advanced Options", open=True): | |
with gr.Column(scale=1): | |
seed = gr.Slider( | |
label="Seed (-1 Random)", | |
minimum=-1, | |
maximum=MAX_SEED, | |
step=1, | |
value=-1, | |
) | |
motion_bucket_id = gr.Slider( | |
label="Motion bucket id", | |
info="Controls how much motion to add/remove from the image", | |
value=127, | |
minimum=1, | |
maximum=255 | |
) | |
fps_id = gr.Slider( | |
label="Frames per second", | |
info="The length of your video in seconds will be 25/fps", | |
value=6, | |
minimum=5, | |
maximum=30 | |
) | |
submit_btn = gr.Button("Generate") | |
clear_btn = gr.ClearButton("Clear") | |
gr.Examples( | |
examples=examples, | |
inputs=image, | |
outputs=[video, seed], | |
fn=generate, | |
cache_examples="lazy", | |
examples_per_page=4, | |
) | |
image.upload(fn=resize_image, inputs=image, outputs=image, queue=False) | |
generate_btn.click(fn=generate, inputs=[image, seed, motion_bucket_id, fps_id], outputs=[video, seed], api_name="video") | |
demo.queue().launch() |