Spaces:
Paused
Paused
import torch | |
class ContinuousODEScheduler(): | |
def __init__(self, num_inference_steps=100, sigma_max=700.0, sigma_min=0.002, rho=7.0): | |
self.sigma_max = sigma_max | |
self.sigma_min = sigma_min | |
self.rho = rho | |
self.set_timesteps(num_inference_steps) | |
def set_timesteps(self, num_inference_steps=100, denoising_strength=1.0): | |
ramp = torch.linspace(1-denoising_strength, 1, num_inference_steps) | |
min_inv_rho = torch.pow(torch.tensor((self.sigma_min,)), (1 / self.rho)) | |
max_inv_rho = torch.pow(torch.tensor((self.sigma_max,)), (1 / self.rho)) | |
self.sigmas = torch.pow(max_inv_rho + ramp * (min_inv_rho - max_inv_rho), self.rho) | |
self.timesteps = torch.log(self.sigmas) * 0.25 | |
def step(self, model_output, timestep, sample, to_final=False): | |
timestep_id = torch.argmin((self.timesteps - timestep).abs()) | |
sigma = self.sigmas[timestep_id] | |
sample *= (sigma*sigma + 1).sqrt() | |
estimated_sample = -sigma / (sigma*sigma + 1).sqrt() * model_output + 1 / (sigma*sigma + 1) * sample | |
if to_final or timestep_id + 1 >= len(self.timesteps): | |
prev_sample = estimated_sample | |
else: | |
sigma_ = self.sigmas[timestep_id + 1] | |
derivative = 1 / sigma * (sample - estimated_sample) | |
prev_sample = sample + derivative * (sigma_ - sigma) | |
prev_sample /= (sigma_*sigma_ + 1).sqrt() | |
return prev_sample | |
def return_to_timestep(self, timestep, sample, sample_stablized): | |
# This scheduler doesn't support this function. | |
pass | |
def add_noise(self, original_samples, noise, timestep): | |
timestep_id = torch.argmin((self.timesteps - timestep).abs()) | |
sigma = self.sigmas[timestep_id] | |
sample = (original_samples + noise * sigma) / (sigma*sigma + 1).sqrt() | |
return sample | |
def training_target(self, sample, noise, timestep): | |
timestep_id = torch.argmin((self.timesteps - timestep).abs()) | |
sigma = self.sigmas[timestep_id] | |
target = (-(sigma*sigma + 1).sqrt() / sigma + 1 / (sigma*sigma + 1).sqrt() / sigma) * sample + 1 / (sigma*sigma + 1).sqrt() * noise | |
return target | |
def training_weight(self, timestep): | |
timestep_id = torch.argmin((self.timesteps - timestep).abs()) | |
sigma = self.sigmas[timestep_id] | |
weight = (1 + sigma*sigma).sqrt() / sigma | |
return weight | |