Spaces:
Running
on
Zero
Running
on
Zero
import subprocess | |
subprocess.run( | |
'pip install flash-attn --no-build-isolation', | |
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, | |
shell=True | |
) | |
import torch | |
from PIL import Image | |
import gradio as gr | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteriaList, StoppingCriteria | |
import os | |
from threading import Thread | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
MODEL_LIST = "THUDM/LongWriter-glm4-9b" | |
#MODELS = os.environ.get("MODELS") | |
#MODEL_NAME = MODELS.split("/")[-1] | |
TITLE = "<h1><center>GLM SPACE</center></h1>" | |
PLACEHOLDER = f'<h3><center>LongWriter-glm4-9b is trained based on glm-4-9b, and is capable of generating 10,000+ words at once.</center></h3>' | |
CSS = """ | |
.duplicate-button { | |
margin: auto !important; | |
color: white !important; | |
background: black !important; | |
border-radius: 100vh !important; | |
} | |
""" | |
model = AutoModelForCausalLM.from_pretrained( | |
"THUDM/LongWriter-glm4-9b", | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
trust_remote_code=True, | |
).eval() | |
tokenizer = AutoTokenizer.from_pretrained("THUDM/LongWriter-glm4-9b",trust_remote_code=True, use_fast=False) | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
# stop_ids = model.config.eos_token_id | |
stop_ids = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"), | |
tokenizer.get_command("<|observation|>")] | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: | |
return True | |
return False | |
def stream_chat(message: str, history: list, temperature: float, max_new_tokens: int): | |
print(f'message is - {message}') | |
print(f'history is - {history}') | |
conversation = [] | |
for prompt, answer in history: | |
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}]) | |
#conversation.append({"role": "user", "content": message}) | |
print(f"Conversation is -\n{conversation}") | |
stop = StopOnTokens() | |
input_ids = tokenizer.build_chat_input(message, history=conversation, role='user').input_ids.to(next(model.parameters()).device) | |
#input_ids = tokenizer.apply_chat_template(conversation, tokenize=True, add_generation_prompt=True, return_tensors="pt", return_dict=True).to(model.device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) | |
eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"), | |
tokenizer.get_command("<|observation|>")] | |
generate_kwargs = dict( | |
input_ids=input_ids, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_k=1, | |
temperature=temperature, | |
repetition_penalty=1, | |
stopping_criteria=StoppingCriteriaList([stop]), | |
eos_token_id=eos_token_id, | |
) | |
#gen_kwargs = {**input_ids, **generate_kwargs} | |
thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
buffer = "" | |
for new_token in streamer: | |
if new_token and '<|user|>' not in new_token: | |
buffer += new_token | |
yield buffer | |
chatbot = gr.Chatbot(height=600, placeholder = PLACEHOLDER) | |
with gr.Blocks(css=CSS) as demo: | |
gr.HTML(TITLE) | |
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") | |
gr.ChatInterface( | |
fn=stream_chat, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.5, | |
label="Temperature", | |
render=False, | |
), | |
gr.Slider( | |
minimum=1024, | |
maximum=32768, | |
step=1, | |
value=4096, | |
label="Max New Tokens", | |
render=False, | |
), | |
], | |
examples=[ | |
["Help me study vocabulary: write a sentence for me to fill in the blank, and I'll try to pick the correct option."], | |
["What are 5 creative things I could do with my kids' art? I don't want to throw them away, but it's also so much clutter."], | |
["Tell me a random fun fact about the Roman Empire."], | |
["Show me a code snippet of a website's sticky header in CSS and JavaScript."], | |
], | |
cache_examples=False, | |
) | |
if __name__ == "__main__": | |
demo.launch() | |