File size: 3,723 Bytes
c98b207
 
 
 
 
09399fd
c98b207
be961e6
c98b207
 
 
 
 
 
 
 
 
 
 
 
09399fd
c98b207
 
 
 
 
 
 
 
 
 
 
 
 
09399fd
c98b207
 
cbb017b
c98b207
09399fd
c98b207
09399fd
c98b207
 
 
 
95dadc7
c98b207
 
 
 
09399fd
c98b207
09399fd
c98b207
 
 
09399fd
 
 
 
c98b207
 
 
 
 
09399fd
c98b207
 
 
09399fd
 
 
c98b207
09399fd
 
be961e6
09399fd
 
 
 
c98b207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb45d22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
from threading import Thread
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoProcessor,TextIteratorStreamer
import os
import time
from huggingface_hub import hf_hub_download



os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"

HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = os.environ.get("MODEL_ID")
MODEL_NAME = MODEL_ID.split("/")[-1]

TITLE = "<h1><center>VL-Chatbox</center></h1>"

DESCRIPTION = "<h3><center>MODEL: " + MODEL_NAME + "</center></h3>"

DEFAULT_SYSTEM = "You named Chatbox. You are a good assitant."

CSS = """
.duplicate-button {
  margin: auto !important;
  color: white !important;
  background: black !important;
  border-radius: 100vh !important;
}
"""

model = AutoModelForCausalLM.from_pretrained(
    MODEL_ID,
    torch_dtype=torch.float16,
    low_cpu_mem_usage=True,
    trust_remote_code=True
).to(0)
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)

eos_token_id=processor.tokenizer.eos_token_id




@spaces.GPU(duration=120, queue=False)
def stream_chat(message, history: list, system: str, temperature: float, max_new_tokens: int):
    print(message)
    conversation = [{"role": "system", "content": system or DEFAULT_SYSTEM}]
    for prompt, answer in history:
        conversation.extend([{"role": "user", "content": f"<|image_1|>\n{prompt}"}, {"role": "assistant", "content": answer}])
    conversation.append({"role": "user", "content": message['text']})
    
    if message["files"]:
        image = Image.open(message["files"][0]).convert('RGB')
    else:
        image = None
        
    prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
    inputs = processor(prompt, [image], return_tensors="pt").to(0) 

    generate_kwargs = dict(
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        do_sample=True,
        eos_token_id=eos_token_id,
    )
    if temperature == 0:
        generate_kwargs["do_sample"] = False
    generate_kwargs = {**inputs, **generate_kwargs}
    
    streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,}) 

    thread = Thread(target=model.generate, kwargs=generate_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer


chatbot = gr.Chatbot(height=450)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)

with gr.Blocks(css=CSS) as demo:
    gr.HTML(TITLE)
    gr.HTML(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.ChatInterface(
        fn=stream_chat,
        multimodal=True,
        chatbot=chatbot,
        textbox=chat_input,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Text(
                value="",
                label="System",
                render=False,
            ),
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=4096,
                step=1,
                value=1024,
                label="Max new tokens",
                render=False,
            ),
        ],
    )


if __name__ == "__main__":
    demo.queue(api_open=False).launch(show_api=False, share=False)