File size: 4,557 Bytes
c98b207
 
 
 
ab89095
 
 
 
c98b207
 
 
cc9dc77
c98b207
 
 
 
 
 
6e89311
c98b207
 
 
 
 
 
 
 
 
 
ab89095
 
 
 
c98b207
ab89095
 
 
 
 
 
c98b207
 
5adecab
2692054
90b9de8
 
ab89095
 
c98b207
0278a97
ab89095
 
 
 
 
 
 
c98b207
2692054
6904764
90b9de8
67d3fd3
6cb9c18
775d6e0
0620ff6
ab89095
 
 
 
 
 
 
 
 
 
0620ff6
ab89095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c98b207
ab89095
 
c98b207
be961e6
ab89095
c98b207
 
 
cf7a112
 
 
 
 
e7455bb
 
60e7596
a927087
 
 
60e7596
e7455bb
c98b207
 
 
 
 
 
 
 
0d0766f
c98b207
a927087
c98b207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a927087
 
c98b207
 
 
bb45d22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from PIL import Image
import gradio as gr
import spaces
import os
from huggingface_hub import hf_hub_download
import base64
from llama_cpp import Llama
from llama_cpp.llama_chat_format import MoondreamChatHandler


os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
MODEL_LIST = ["openbmb/MiniCPM-Llama3-V-2_5","openbmb/MiniCPM-Llama3-V-2_5-int4"]
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = os.environ.get("MODEL_ID")
MODEL_NAME = MODEL_ID.split("/")[-1]

TITLE = "<h1><center>VL-Chatbox</center></h1>"

DESCRIPTION = f'<h3><center>MODEL: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></center></h3>'

CSS = """
.duplicate-button {
  margin: auto !important;
  color: white !important;
  background: black !important;
  border-radius: 100vh !important;
}
"""

chat_handler = MoondreamChatHandler.from_pretrained(
  repo_id="openbmb/MiniCPM-Llama3-V-2_5-gguf",
  filename="*mmproj*",
)

llm = Llama.from_pretrained(
  repo_id="openbmb/MiniCPM-Llama3-V-2_5-gguf",
  filename="ggml-model-Q5_K_M.gguf",
  chat_handler=chat_handler,
  n_ctx=2048, # n_ctx should be increased to accommodate the image embedding
)


@spaces.GPU(queue=False)
def stream_chat(message, history: list, temperature: float, max_new_tokens: int):
    print(f'message is - {message}')
    print(f'history is - {history}')
    messages = []

    if message["files"]:
        image = Image.open(message["files"][-1]).convert('RGB')
        messages.append({
            "role": "user", 
            "content": [
                {"type": "text", "text": message['text']},
                {"type": "image_url", "image_url":{"url": image}}
            ]
        })
    else:
        if len(history) == 0:
            raise gr.Error("Please upload an image first.")
            image = None
        else:
            image = Image.open(history[0][0][0])
            for prompt, answer in history:
                if answer is None:
                    messages.extend([{
                        "role": "user", 
                        "content": [
                            {"type": "text", "text": prompt},
                            {"type": "image_url", "image_url": {"url": image}}
                        ]
                    },{
                        "role": "assistant", 
                        "content": ""
                    }])
                else:
                    messages.extend([{
                        "role": "user", 
                        "content": [
                            {"type": "text", "text": prompt},
                            {"type": "image_url", "image_url": {"url": image}}
                        ]
                    }, {
                        "role": "assistant", 
                        "content": answer
                    }])
            messages.append({"role": "user", "content": message['text']})    
    print(f"Messages is -\n{messages}")


    response = llm.create_chat_completion(
        messages = messages,
        temperature=temperature,
        max_tokens=max_new_tokens,
        stream=True
    )

    return response["choices"][0]["text"]


chatbot = gr.Chatbot(height=450)
chat_input = gr.MultimodalTextbox(
    interactive=True, 
    file_types=["image"], 
    placeholder="Enter message or upload file...", 
    show_label=False,

)
EXAMPLES = [
        [{"text": "What is on the desk?", "files": ["./laptop.jpg"]}],
        [{"text": "Where it is?", "files": ["./hotel.jpg"]}],
        [{"text": "Can yo describe this image?", "files": ["./spacecat.png"]}]
]

with gr.Blocks(css=CSS) as demo:
    gr.HTML(TITLE)
    gr.HTML(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.ChatInterface(
        fn=stream_chat,
        multimodal=True,
        textbox=chat_input,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=4096,
                step=1,
                value=1024,
                label="Max new tokens",
                render=False,
            ),
        ],
    ),
    gr.Examples(EXAMPLES,[chat_input])


if __name__ == "__main__":
    demo.queue(api_open=False).launch(show_api=False, share=False)