File size: 4,987 Bytes
c98b207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c6879a
c98b207
 
4bc3459
 
 
c98b207
 
 
 
 
 
 
 
4bc3459
c98b207
 
cbb017b
c98b207
cbb017b
c98b207
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb45d22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from threading import Thread
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, TextIteratorStreamer
import os
from huggingface_hub import hf_hub_download



os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"

HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = os.environ.get("MODEL_ID")
MODEL_NAME = MODEL_ID.split("/")[-1]

TITLE = "<h1><center>VL-Chatbox</center></h1>"

DESCRIPTION = "<h3><center>MODEL LOADED: " + MODEL_NAME + "</center></h3>"

DEFAULT_SYSTEM = "You named Chatbox. You are a good assitant."

CSS = """
.duplicate-button {
  margin: auto !important;
  color: white !important;
  background: black !important;
  border-radius: 100vh !important;
}
"""

filenames = [
    "generation_config.json",
    "model-00001-of-00004.safetensors",
    "model-00002-of-00004.safetensors",
    "model-00003-of-00004.safetensors",
    "model-00004-of-00004.safetensors",
    "model.safetensors.index.json",
    "special_tokens_map.json",
    "tokenizer.json",
    "tokenizer_config.json"
]

for filename in filenames:
    downloaded_model_path = hf_hub_download(
        repo_id=MODEL_ID,
        filename=filename,
        local_dir="./model/"
    )

for items in os.listdir("./model"):
    print(items)

# def no_logger():
#     logging.config.dictConfig({
#         'version': 1,
#         'disable_existing_loggers': True,
#     })


model = AutoModelForCausalLM.from_pretrained(
    pretrained_model_name_or_path="./model/",
    torch_dtype=torch.float16,
    low_cpu_mem_usage=True,
    trust_remote_code=True
).to(0)
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path="./model/",trust_remote_code=True)
vision_tower = model.get_vision_tower()
vision_tower.load_model()
vision_tower.to(device="cuda", dtype=torch.float16)
image_processor = vision_tower.image_processor
tokenizer.pad_token = tokenizer.eos_token

# Define terminators (if applicable, adjust as needed)
terminators = [
    tokenizer.eos_token_id,
    tokenizer.convert_tokens_to_ids("<|eot_id|>")
]




@spaces.GPU
def stream_chat(message, history: list, system: str, temperature: float, max_new_tokens: int):
    print(message)
    conversation = [{"role": "system", "content": system or DEFAULT_SYSTEM}]
    for prompt, answer in history:
        conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])

    conversation.append({"role": "user", "content": message['text']})
    if message["files"]:
        image = Image.open(message["files"][0]).convert('RGB')
        # Process the conversation text
        inputs = model.build_conversation_input_ids(tokenizer, query=message['text'], image=image, image_processor=image_processor)
        input_ids = inputs["input_ids"].to(device='cuda', non_blocking=True)
        images = inputs["image"].to(dtype=torch.float16, device='cuda', non_blocking=True)
    else:
        input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(model.device)
        images = None

    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)

    generate_kwargs = dict(
        input_ids=input_ids,
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        do_sample=True,
        eos_token_id=terminators,
        images=images
    )
    if temperature == 0:
        generate_kwargs["do_sample"] = False

    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()
    output = ""
    for new_token in streamer:
        output += new_token
        yield output


chatbot = gr.Chatbot(height=450)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)

with gr.Blocks(css=CSS) as demo:
    gr.HTML(TITLE)
    gr.HTML(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.ChatInterface(
        fn=stream_chat,
        multimodal=True,
        chatbot=chatbot,
        textbox=chat_input,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Text(
                value="",
                label="System",
                render=False,
            ),
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.8,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=4096,
                step=1,
                value=1024,
                label="Max new tokens",
                render=False,
            ),
        ],
    )


if __name__ == "__main__":
    demo.queue(api_open=False).launch(show_api=False, share=False)