Spaces:
Running
on
Zero
Running
on
Zero
import subprocess | |
subprocess.run( | |
'pip install flash-attn --no-build-isolation', | |
env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, | |
shell=True | |
) | |
from threading import Thread | |
import torch | |
from PIL import Image | |
import gradio as gr | |
import spaces | |
from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer | |
import os | |
import time | |
from huggingface_hub import hf_hub_download | |
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
MODEL_ID = os.environ.get("MODEL_ID") | |
MODEL_NAME = MODEL_ID.split("/")[-1] | |
TITLE = "<h1><center>VL-Chatbox</center></h1>" | |
DESCRIPTION = "<h3><center>MODEL: " + MODEL_NAME + "</center></h3>" | |
CSS = """ | |
.duplicate-button { | |
margin: auto !important; | |
color: white !important; | |
background: black !important; | |
border-radius: 100vh !important; | |
} | |
""" | |
model = AutoModelForCausalLM.from_pretrained( | |
MODEL_ID, | |
torch_dtype=torch.float16, | |
low_cpu_mem_usage=True, | |
trust_remote_code=True | |
).to(0) | |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True) | |
eos_token_id=processor.tokenizer.eos_token_id | |
def stream_chat(message, history: list, temperature: float, max_new_tokens: int): | |
print(f'message is - {message}') | |
print(f'history is - {history}') | |
conversation = [] | |
if message["files"]: | |
image = Image.open(message["files"][-1]) | |
conversation.append({"role": "user", "content": f"<|image_1|>\n{message['text']}"}) | |
else: | |
if len(history) == 0: | |
raise gr.Error("Please upload an image first.") | |
image = None | |
else: | |
image = Image.open(history[0][0][0]) | |
for prompt, answer in history: | |
if answer is None: | |
conversation.extend([{"role": "user", "content":"<|image_1|>"},{"role": "assistant", "content": ""}]) | |
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}]) | |
conversation.append({"role": "user", "content": message['text']}) | |
print(f"Conversation is -\n{conversation}") | |
inputs = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) | |
inputs_ids = processor(inputs, image, return_tensors="pt").to(0) | |
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True, "skip_prompt": True, 'clean_up_tokenization_spaces':False,}) | |
generate_kwargs = dict( | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
do_sample=True, | |
eos_token_id=eos_token_id, | |
) | |
if temperature == 0: | |
generate_kwargs["do_sample"] = False | |
generate_kwargs = {**inputs_ids, **generate_kwargs} | |
thread = Thread(target=model.generate, kwargs=generate_kwargs) | |
thread.start() | |
buffer = "" | |
for new_text in streamer: | |
buffer += new_text | |
yield buffer | |
chatbot = gr.Chatbot(height=450) | |
chat_input = gr.MultimodalTextbox( | |
interactive=True, | |
file_types=["image"], | |
placeholder="Enter message or upload file...", | |
show_label=False, | |
) | |
EXAMPLES = [ | |
[{"text": "What is on the desk?", "files": ["./laptop.jpg"]}], | |
[{"text": "Where it is?", "files": ["./hotel.jpg"]}], | |
[{"text": "Can yo describe this image?", "files": ["./spacecat.png"]}] | |
] | |
with gr.Blocks(css=CSS) as demo: | |
gr.HTML(TITLE) | |
gr.HTML(DESCRIPTION) | |
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") | |
gr.ChatInterface( | |
fn=stream_chat, | |
multimodal=True, | |
textbox=chat_input, | |
chatbot=chatbot, | |
fill_height=True, | |
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), | |
additional_inputs=[ | |
gr.Slider( | |
minimum=0, | |
maximum=1, | |
step=0.1, | |
value=0.8, | |
label="Temperature", | |
render=False, | |
), | |
gr.Slider( | |
minimum=128, | |
maximum=4096, | |
step=1, | |
value=1024, | |
label="Max new tokens", | |
render=False, | |
), | |
], | |
), | |
gr.Examples(EXAMPLES,[chat_input]) | |
if __name__ == "__main__": | |
demo.queue(api_open=False).launch(show_api=False, share=False) |