VL-Chatbox / app.py
vilarin's picture
Update app.py
775d6e0 verified
raw
history blame
3.87 kB
# import subprocess
# subprocess.run(
# 'pip install flash-attn --no-build-isolation',
# env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"},
# shell=True
# )
from threading import Thread
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModel, AutoTokenizer, TextIteratorStreamer
import os
import time
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = os.environ.get("MODEL_ID")
MODEL_NAME = MODEL_ID.split("/")[-1]
TITLE = "<h1><center>VL-Chatbox</center></h1>"
DESCRIPTION = f'<h3><center>MODEL: <a href="https://hf.co/{MODEL_ID}">{MODEL_NAME}</a></center></h3>'
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
"""
model = AutoModel.from_pretrained(
MODEL_ID,
torch_dtype=torch.float16,
trust_remote_code=True
).to(0)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
model.eval()
@spaces.GPU(queue=False)
def stream_chat(message, history: list, temperature: float, max_new_tokens: int):
print(f'message is - {message}')
print(f'history is - {history}')
conversation = []
if message["files"]:
image = Image.open(message["files"][-1]).convert('RGB')
conversation.append({"role": "user", "content": message['text']})
else:
if len(history) == 0:
raise gr.Error("Please upload an image first.")
image = None
else:
image = Image.open(history[0][0][0])
for prompt, answer in history:
if answer is None:
conversation.extend([{"role": "user", "content": prompt},{"role": "assistant", "content": ""}])
else:
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
conversation.append({"role": "user", "content": message['text']})
print(f"Conversation is -\n{conversation}")
generate_kwargs = dict(
image=image,
msgs=conversation,
max_new_tokens=max_new_tokens,
temperature=temperature,
sampling=True,
tokenizer=tokenizer,
)
if temperature == 0:
generate_kwargs["sampling"] = False
response = model.chat(**generate_kwargs)
return response
chatbot = gr.Chatbot(height=450)
chat_input = gr.MultimodalTextbox(
interactive=True,
file_types=["image"],
placeholder="Enter message or upload file...",
show_label=False,
)
EXAMPLES = [
[{"text": "What is on the desk?", "files": ["./laptop.jpg"]}],
[{"text": "Where it is?", "files": ["./hotel.jpg"]}],
[{"text": "Can yo describe this image?", "files": ["./spacecat.png"]}]
]
with gr.Blocks(css=CSS) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
multimodal=True,
textbox=chat_input,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
],
),
gr.Examples(EXAMPLES,[chat_input])
if __name__ == "__main__":
demo.queue(api_open=False).launch(show_api=False, share=False)