Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,7 @@ import torch
|
|
9 |
from PIL import Image
|
10 |
import gradio as gr
|
11 |
import spaces
|
12 |
-
from transformers import AutoModelForCausalLM, AutoProcessor,TextIteratorStreamer
|
13 |
import os
|
14 |
import time
|
15 |
from huggingface_hub import hf_hub_download
|
@@ -44,7 +44,6 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
44 |
trust_remote_code=True
|
45 |
).to(0)
|
46 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
47 |
-
|
48 |
eos_token_id=processor.tokenizer.eos_token_id
|
49 |
|
50 |
|
@@ -53,19 +52,19 @@ eos_token_id=processor.tokenizer.eos_token_id
|
|
53 |
@spaces.GPU(duration=120, queue=False)
|
54 |
def stream_chat(message, history: list, system: str, temperature: float, max_new_tokens: int):
|
55 |
print(message)
|
56 |
-
conversation = [{"role": "
|
57 |
for prompt, answer in history:
|
58 |
conversation.extend([{"role": "user", "content": f"<|image_1|>\n{prompt}"}, {"role": "assistant", "content": answer}])
|
59 |
conversation.append({"role": "user", "content": message['text']})
|
60 |
|
61 |
if message["files"]:
|
62 |
-
image = Image.open(message["files"][
|
63 |
else:
|
64 |
image = None
|
65 |
|
66 |
prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
67 |
-
inputs = processor(prompt, [image], return_tensors="pt").to(0)
|
68 |
-
|
69 |
generate_kwargs = dict(
|
70 |
max_new_tokens=max_new_tokens,
|
71 |
temperature=temperature,
|
|
|
9 |
from PIL import Image
|
10 |
import gradio as gr
|
11 |
import spaces
|
12 |
+
from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer
|
13 |
import os
|
14 |
import time
|
15 |
from huggingface_hub import hf_hub_download
|
|
|
44 |
trust_remote_code=True
|
45 |
).to(0)
|
46 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
|
|
47 |
eos_token_id=processor.tokenizer.eos_token_id
|
48 |
|
49 |
|
|
|
52 |
@spaces.GPU(duration=120, queue=False)
|
53 |
def stream_chat(message, history: list, system: str, temperature: float, max_new_tokens: int):
|
54 |
print(message)
|
55 |
+
conversation = [{"role": "user", "content": system or DEFAULT_SYSTEM}]
|
56 |
for prompt, answer in history:
|
57 |
conversation.extend([{"role": "user", "content": f"<|image_1|>\n{prompt}"}, {"role": "assistant", "content": answer}])
|
58 |
conversation.append({"role": "user", "content": message['text']})
|
59 |
|
60 |
if message["files"]:
|
61 |
+
image = Image.open(message["files"][-1]).convert('RGB')
|
62 |
else:
|
63 |
image = None
|
64 |
|
65 |
prompt = processor.tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
|
66 |
+
inputs = processor(prompt, images=[image], return_tensors="pt").to(0)
|
67 |
+
|
68 |
generate_kwargs = dict(
|
69 |
max_new_tokens=max_new_tokens,
|
70 |
temperature=temperature,
|