from threading import Thread
import torch
from PIL import Image
import gradio as gr
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
import time
from huggingface_hub import hf_hub_download
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
HF_TOKEN = os.environ.get("HF_TOKEN", None)
MODEL_ID = os.environ.get("MODEL_ID")
MODEL_NAME = MODEL_ID.split("/")[-1]
TITLE = "
VL-Chatbox
"
DESCRIPTION = "MODEL LOADED: " + MODEL_NAME + "
"
DEFAULT_SYSTEM = "You named Chatbox. You are a good assitant."
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
"""
filenames = [
"config.json",
"generation_config.json",
"model-00001-of-00004.safetensors",
"model-00002-of-00004.safetensors",
"model-00003-of-00004.safetensors",
"model-00004-of-00004.safetensors",
"model.safetensors.index.json",
"special_tokens_map.json",
"tokenizer.json",
"tokenizer_config.json"
]
for filename in filenames:
downloaded_model_path = hf_hub_download(
repo_id=MODEL_ID,
filename=filename,
local_dir="./model/"
)
for items in os.listdir("./model"):
print(items)
# def no_logger():
# logging.config.dictConfig({
# 'version': 1,
# 'disable_existing_loggers': True,
# })
model = AutoModelForCausalLM.from_pretrained(
"./model/",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(0)
tokenizer = AutoTokenizer.from_pretrained("./model/",trust_remote_code=True)
vision_tower = model.get_vision_tower()
vision_tower.load_model()
vision_tower.to(device="cuda", dtype=torch.float16)
image_processor = vision_tower.image_processor
tokenizer.pad_token = tokenizer.eos_token
# Define terminators (if applicable, adjust as needed)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
@spaces.GPU
def stream_chat(message, history: list, system: str, temperature: float, max_new_tokens: int):
print(message)
conversation = [{"role": "system", "content": system or DEFAULT_SYSTEM}]
for prompt, answer in history:
conversation.extend([{"role": "user", "content": prompt}, {"role": "assistant", "content": answer}])
conversation.append({"role": "user", "content": message['text']})
if message["files"]:
image = Image.open(message["files"][0]).convert('RGB')
# Process the conversation text
inputs = model.build_conversation_input_ids(
tokenizer,
query=message['text'],
image=image,
image_processor=image_processor,
)
input_ids = inputs["input_ids"].to(device='cuda', non_blocking=True)
images = inputs["image"].to(dtype=torch.float16, device='cuda', non_blocking=True)
else:
input_ids = tokenizer.apply_chat_template(
conversation,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
images = None
generate_kwargs = dict(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
temperature=temperature,
do_sample=True,
num_beams=1,
eos_token_id=terminators,
images=images
)
if temperature == 0:
generate_kwargs["do_sample"] = False
output_ids=model.generate(**generate_kwargs)
input_token_len = input_ids.shape[1]
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
for i in range(len(outputs)):
time.sleep(0.05)
yield outputs[: i + 1]
chatbot = gr.Chatbot(height=450)
chat_input = gr.MultimodalTextbox(interactive=True, file_types=["image"], placeholder="Enter message or upload file...", show_label=False)
with gr.Blocks(css=CSS) as demo:
gr.HTML(TITLE)
gr.HTML(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
multimodal=True,
chatbot=chatbot,
textbox=chat_input,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Text(
value="",
label="System",
render=False,
),
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.8,
label="Temperature",
render=False,
),
gr.Slider(
minimum=128,
maximum=4096,
step=1,
value=1024,
label="Max new tokens",
render=False,
),
],
)
if __name__ == "__main__":
demo.queue(api_open=False).launch(show_api=False, share=False)