File size: 29,883 Bytes
ac4b886
 
 
 
 
58bd689
ac4b886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7aa8f1f
 
 
ac4b886
7aa8f1f
ac4b886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e2b2f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac4b886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e2b2f3
 
 
 
 
 
 
 
 
 
fbcbb8e
 
 
ac4b886
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
import os
import gradio as gr
from random import randint
from operator import itemgetter
import bisect
from all_models2 import tags_plus_models,models,models_plus_tags,find_warm_model_list
from datetime import datetime
from externalmod import gr_Interface_load
import asyncio
import os
from threading import RLock
lock = RLock()
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.

now2 = 0
inference_timeout = 300
MAX_SEED = 2**32-1


nb_rep=2
nb_mod_dif=20
nb_models=nb_mod_dif*nb_rep

cache_image={}
cache_image_actu={}

def split_models(models,nb_models):
    models_temp=[]
    models_lis_temp=[]
    i=0
    for m in models:
        models_temp.append(m)
        i=i+1
        if i%nb_models==0:
            models_lis_temp.append(models_temp)
            models_temp=[]
    if len(models_temp)>1:
        models_lis_temp.append(models_temp)
    return models_lis_temp

def split_models_axb(models,a,b):
    models_temp=[]
    models_lis_temp=[]
    i=0
    nb_models=b
    for m in models:
        for j in range(a):
            models_temp.append(m)
        i=i+1
        if i%nb_models==0:
            models_lis_temp.append(models_temp)
            models_temp=[]
    if len(models_temp)>1:
        models_lis_temp.append(models_temp)
    return models_lis_temp 

def split_models_8x3(models,nb_models):
    models_temp=[]
    models_lis_temp=[]
    i=0
    nb_models_x3=8
    for m in models:
        models_temp.append(m)
        i=i+1
        if i%nb_models_x3==0:
            models_lis_temp.append(models_temp+models_temp+models_temp)
            models_temp=[]
    if len(models_temp)>1:
        models_lis_temp.append(models_temp+models_temp+models_temp)
    return models_lis_temp

def construct_list_models(tags_plus_models,nb_rep,nb_mod_dif):
    list_temp=[]
    output=[]
    for tag_plus_models in tags_plus_models:
        list_temp=split_models_axb(tag_plus_models[2],nb_rep,nb_mod_dif)
        list_temp2=[]
        i=0
        for elem in list_temp:
            list_temp2.append([f"{tag_plus_models[0]}_{i+1}/{len(list_temp)} ({len(elem)}) : {elem[0]} - {elem[len(elem)-1]}" ,elem])
            i+=1
        output.append([f"{tag_plus_models[0]} ({tag_plus_models[1]})",list_temp2])
        tag_plus_models[0]=f"{tag_plus_models[0]} ({tag_plus_models[1]})"
    return output

models_test = []
models_test = construct_list_models(tags_plus_models,nb_rep,nb_mod_dif)

def get_current_time():
    now = datetime.now()
    now2 = now
    current_time = now2.strftime("%Y-%m-%d %H:%M:%S")
    kii = "" # ?
    ki = f'{kii} {current_time}'
    return ki

def load_fn_original(models):
    global models_load
    global num_models
    global default_models
    models_load = {}
    num_models = len(models)
    if num_models!=0:
        default_models = models[:num_models]
    else:
        default_models = {}
    for model in models:
        if model not in models_load.keys():
            try:
                m = gr.load(f'models/{model}')
            except Exception as error:
                m = gr.Interface(lambda txt: None, ['text'], ['image'])
                print(error)
            models_load.update({model: m})

def load_fn(models):
    global models_load
    global num_models
    global default_models
    models_load = {}
    num_models = len(models)
    i=0
    if num_models!=0:
        default_models = models[:num_models]
    else:
        default_models = {}
    for model in models:
        i+=1
        if i%50==0:
            print("\n\n\n-------"+str(i)+'/'+str(len(models))+"-------\n\n\n")
        if model not in models_load.keys():
            try:
                m = gr_Interface_load(f'models/{model}', hf_token=HF_TOKEN)
            except Exception as error:
                m = gr.Interface(lambda txt: None, ['text'], ['image'])
                print(error)
            models_load.update({model: m})


"""models = models_test[1]"""
#load_fn_original
load_fn(models)
"""models = {}
load_fn(models)"""
    

def extend_choices(choices):
    return choices + (nb_models - len(choices)) * ['NA']
    """return choices + (num_models - len(choices)) * ['NA']"""

def extend_choices_b(choices):
    choices_plus = extend_choices(choices)
    return [gr.Textbox(m, visible=False) for m in choices_plus]

def update_imgbox(choices):
    choices_plus = extend_choices(choices)
    return [gr.Image(None, label=m,interactive=False, visible=(m != 'NA'),show_share_button=False) for m in choices_plus]

def choice_group_a(group_model_choice):
    return group_model_choice

def choice_group_b(group_model_choice):
    choiceTemp =choice_group_a(group_model_choice)
    choiceTemp = extend_choices(choiceTemp)
    """return [gr.Image(label=m, min_width=170, height=170) for m in choice]"""
    return [gr.Image(None, label=m,interactive=False, visible=(m != 'NA'),show_share_button=False) for m in choiceTemp]

def choice_group_c(group_model_choice):
    choiceTemp=choice_group_a(group_model_choice)
    choiceTemp = extend_choices(choiceTemp)
    return [gr.Textbox(m) for m in choiceTemp]
    
def choice_group_d(group_model_choice):
    choiceTemp=choice_group_a(group_model_choice)
    choiceTemp = extend_choices(choiceTemp)
    return [gr.Textbox(choiceTemp[i*nb_rep], visible=(choiceTemp[i*nb_rep] != 'NA'),show_label=False) for i in range(nb_mod_dif)]
def choice_group_e(group_model_choice):
    choiceTemp=choice_group_a(group_model_choice)
    choiceTemp = extend_choices(choiceTemp)
    return [gr.Column(visible=(choiceTemp[i*nb_rep] != 'NA')) for i in range(nb_mod_dif)]

def cutStrg(longStrg,start,end):
    shortStrg=''
    for i in range(end-start):
        shortStrg+=longStrg[start+i]
    return shortStrg
    
def aff_models_perso(txt_list_perso,nb_models=nb_models,models=models):
    list_perso=[]
    t1=True
    start=txt_list_perso.find('\"')
    if start!=-1:
        while t1:
            start+=1
            end=txt_list_perso.find('\"',start)
            if end != -1:
                txtTemp=cutStrg(txt_list_perso,start,end)
                if txtTemp in models:
                    list_perso.append(cutStrg(txt_list_perso,start,end))
            else :
                t1=False
            start=txt_list_perso.find('\"',end+1)
            if start==-1:
                t1=False
            if len(list_perso)>=nb_models:
                t1=False
    return list_perso

def aff_models_perso_b(txt_list_perso):
    return choice_group_b(aff_models_perso(txt_list_perso))

def aff_models_perso_c(txt_list_perso):
    return choice_group_c(aff_models_perso(txt_list_perso))
            
            
def tag_choice(group_tag_choice):
    return gr.Dropdown(label="List of Models with the chosen Tag", show_label=True, choices=list(group_tag_choice) , interactive = True , filterable = False)

def test_pass(test):
    if test==os.getenv('p'):
        print("ok")
        return gr.Dropdown(label="Lists Tags", show_label=True, choices=list(models_test) , interactive = True)
    else:
        print("nop")
        return gr.Dropdown(label="Lists Tags", show_label=True, choices=list([]) , interactive = True)

def test_pass_aff(test):
    if test==os.getenv('p'):
        return gr.Accordion( open=True, visible=True) ,gr.Row(visible=False)
    else:
        return gr.Accordion( open=True, visible=False) , gr.Row()


# https://huggingface.co/docs/api-inference/detailed_parameters
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
async def infer(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1, timeout=inference_timeout):
    from pathlib import Path
    kwargs = {}
    if height is not None and height >= 256: kwargs["height"] = height
    if width is not None and width >= 256: kwargs["width"] = width
    if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
    if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
    if seed >= 0: kwargs["seed"] = seed
    else: kwargs["seed"] = randint(1, MAX_SEED-1)

        
    task = asyncio.create_task(asyncio.to_thread(models_load[model_str].fn,
                               prompt=prompt, negative_prompt=nprompt, **kwargs, token=HF_TOKEN))
    await asyncio.sleep(0)
    try:
        result = await asyncio.wait_for(task, timeout=timeout)
    except (Exception, asyncio.TimeoutError) as e:
        print(e)
        print(f"Task timed out: {model_str}")
        if not task.done(): task.cancel()
        result = None
    if task.done() and result is not None:
        with lock:
            png_path = "image.png"
            result.save(png_path)
            image = str(Path(png_path).resolve())
        return image
    return None

def gen_fn(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1):
    if model_str == 'NA':
        return None
    try:
        loop = asyncio.new_event_loop()
        result = loop.run_until_complete(infer(model_str, prompt, nprompt,
                                         height, width, steps, cfg, seed, inference_timeout))
    except (Exception, asyncio.CancelledError) as e:
        print(e)
        print(f"Task aborted: {model_str}")
        result = None
    finally:
        loop.close()
    return result

def gen_fn_original(model_str, prompt):
    if model_str == 'NA':
        return None
    noise = str(randint(0, 9999))
    try :
        m=models_load[model_str](f'{prompt} {noise}')
    except Exception as error : 
        print("error : " + model_str)
        print(error)
        m=False
    
    return m

   
def add_gallery(image, model_str, gallery):
    if gallery is None: gallery = []
    #with lock:
    if image is not None: gallery.append((image, model_str))
    return gallery

def reset_gallery(gallery):
    return add_gallery(None,"",[])

def load_gallery(gallery,id):
    gallery = reset_gallery(gallery)
    for c in cache_image[f"{id}"]:
        gallery=add_gallery(c[0],c[1],gallery)
    return gallery
def load_gallery_sorted(gallery,id):
    gallery = reset_gallery(gallery)
    for c in sorted(cache_image[f"{id}"], key=itemgetter(1)):
        gallery=add_gallery(c[0],c[1],gallery)
    return gallery
def load_gallery_actu(gallery,id):
    gallery = reset_gallery(gallery)
    for c in cache_image_actu[f"{id}"]:
        gallery=add_gallery(c[0],c[1],gallery)
    return gallery

def add_cache_image(image, model_str,id,cache_image=cache_image):
    if image is not None:
        cache_image[f"{id}"].append((image,model_str))
    #cache_image=sorted(cache_image, key=itemgetter(1))
    return 
def add_cache_image_actu(image, model_str,id,cache_image_actu=cache_image_actu):
    if image is not None:
        bisect.insort(cache_image_actu[f"{id}"],(image, model_str), key=itemgetter(1))
    #cache_image_actu=sorted(cache_image_actu, key=itemgetter(1))
    return
def reset_cache_image(id,cache_image=cache_image):
    cache_image[f"{id}"].clear()
    return 
def reset_cache_image_actu(id,cache_image_actu=cache_image_actu):
    cache_image_actu[f"{id}"].clear()
    return 
def reset_cache_image_all_sessions(cache_image=cache_image,cache_image_actu=cache_image_actu):
    for key, listT in cache_image.items():
        listT.clear()
    for key, listT in cache_image_actu.items():
        listT.clear()
    return 
    
def set_session(id):
    if id==0:
        randTemp=randint(1,MAX_SEED)
        cache_image[f"{randTemp}"]=[]
        cache_image_actu[f"{randTemp}"]=[]
        return gr.Number(visible=False,value=randTemp)
    else :
        return id
def print_info_sessions():
    lenTot=0
    print("###################################")
    print("number of sessions : "+str(len(cache_image)))
    for key, listT in cache_image.items():
        print("session "+key+" : "+str(len(listT)))
        lenTot+=len(listT)
    print("images total = "+str(lenTot))
    print("###################################")
    return

def disp_models(group_model_choice,nb_rep=nb_rep):
    listTemp=[]
    strTemp='\n'
    i=0
    for m in group_model_choice:
        if m not in listTemp:
            listTemp.append(m)
    for m in listTemp:
        i+=1
        strTemp+="\"" + m + "\",\n"
        if i%(8/nb_rep)==0:
            strTemp+="\n"
    return gr.Textbox(label="models",value=strTemp)

def search_models(str_search,tags_plus_models=tags_plus_models):
    output1="\n"
    output2=""
    for m in tags_plus_models[0][2]:
        if m.find(str_search)!=-1:
            output1+="\"" + m + "\",\n"
    outputPlus="\n From tags : \n\n"
    for tag_plus_models in tags_plus_models:
        if str_search.lower() == tag_plus_models[0].lower() and str_search!="":
            for m in tag_plus_models[2]:
                output2+="\"" + m + "\",\n"
    if output2 != "":
        output=output1+outputPlus+output2
    else :
        output=output1
    return gr.Textbox(label="out",value=output)

def search_info(txt_search_info,models_plus_tags=models_plus_tags):
    outputList=[]
    if txt_search_info.find("\"")!=-1:
        start=txt_search_info.find("\"")+1
        end=txt_search_info.find("\"",start)
        m_name=cutStrg(txt_search_info,start,end)
    else :
        m_name = txt_search_info
    for m in models_plus_tags:
        if m_name == m[0]:
            outputList=m[1]
    if len(outputList)==0:
        outputList.append("Model Not Find")
    return gr.Textbox(label="out",value=outputList)

def add_in_blacklist(bl,model):
    return gr.Textbox(bl+(f"\"{model}\",\n"))
def add_in_fav(fav,model):
    return gr.Textbox(fav+(f"\"{model}\",\n"))
def rand_from_all_all_models():
    if len(tags_plus_models[0][2])<nb_mod_dif:
        return choice_group_c(tags_plus_models[0][2])
    else:
        result=[]
        list_index_temp=[]
        for i in range(len(tags_plus_models[0][2])):
            list_index_temp.append(i)
        for i in range(nb_mod_dif):
            index_temp=randint(1,len(list_index_temp))-1
            for j in range(nb_rep):
                result.append(gr.Textbox(tags_plus_models[0][2][list_index_temp[index_temp]]))
            list_index_temp.remove(list_index_temp[index_temp])
        return result
def rand_from_tag_all_models(index):
    if len(tags_plus_models[index][2])<nb_mod_dif:
        return choice_group_c(models_test[index][1][0][1])
    else:
        result=[]
        list_index_temp=[]
        for i in range(len(tags_plus_models[index][2])):
            list_index_temp.append(i)
        for i in range(nb_mod_dif):
            index_temp=randint(1,len(list_index_temp))-1
            for j in range(nb_rep):
                result.append(gr.Textbox(tags_plus_models[index][2][list_index_temp[index_temp]]))
            list_index_temp.remove(list_index_temp[index_temp])
        return result
        
def find_index_tag(group_tag_choice):
    for i in (range(len(models_test)-1)):
        if models_test[i][1]==group_tag_choice:
            return gr.Number(i)
    return gr.Number(0)


def fonc_search_warm_models(tag,b_format):
    if tag == "":
        tagT=["stable-diffusion-xl"]
    else:
        tagT=["stable-diffusion-xl",tag]
    models_temp , models_plus_tags_temp = find_warm_model_list("John6666", tagT, "", "last_modified", 10000)
    s=""
    if b_format:
        rep=nb_rep
    else:
        rep=1
    for m in models_temp:
        if m in models:
            for i in range(rep):
                s+=f"\"{m}\",\n"
    return gr.Textbox(s)
    
def ratio_chosen(choice_ratio,width,height):
    if choice_ratio == [None,None]:
        return width , height
    else :
        return gr.Slider(label="Width", info="If 0, the default value is used.", maximum=2024, step=32, value=choice_ratio[0]), gr.Slider(label="Height", info="If 0, the default value is used.", maximum=2024, step=32, value=choice_ratio[1])

list_ratios=[["None",[None,None]],
             ["4:1 (2048 x 512)",[2048,512]],
             ["12:5 (1536 x 640)",[1536,640]],
             ["~16:9 (1344 x 768)",[1344,768]],
             ["~3:2 (1216 x 832)",[1216,832]],
             ["~4:3 (1152 x 896)",[1152,896]],
             ["1:1 (1024 x 1024)",[1024,1024]],
             ["~3:4 (896 x 1152)",[896,1152]],
             ["~2:3 (832 x 1216)",[832,1216]],
             ["~9:16 (768 x 1344)",[768,1344]],
             ["5:12 (640 x 1536)",[640,1536]],
             ["1:4 (512 x 2048)",[512,2048]]]

def make_me():
   # with gr.Tab('The Dream'): 
        with gr.Row():
            #txt_input = gr.Textbox(lines=3, width=300, max_height=100)
            #txt_input = gr.Textbox(label='Your prompt:', lines=3, width=300, max_height=100)
            with gr.Column(scale=4):
                with gr.Group():
                    txt_input = gr.Textbox(label='Your prompt:', lines=3)
                    with gr.Accordion("Advanced", open=False, visible=True):
                        neg_input = gr.Textbox(label='Negative prompt:', lines=1)
                        with gr.Row():
                            width = gr.Slider(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                            height = gr.Slider(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
                        with gr.Row():
                            choice_ratio = gr.Dropdown(label="Ratio Width/Height", 
                                                info="OverWrite Width and Height (W*H<1024*1024)", 
                                                show_label=True, choices=list(list_ratios) , interactive = True, value=list_ratios[0][1])
                            choice_ratio.change(ratio_chosen,[choice_ratio,width,height],[width,height])
                        with gr.Row():
                            steps = gr.Slider(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
                            cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
                            seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
                #gen_button = gr.Button('Generate images', width=150, height=30)
            #stop_button = gr.Button('Stop', variant='secondary', interactive=False, width=150, height=30)
            gen_button = gr.Button('Generate images', scale=3)
            stop_button = gr.Button('Stop', variant='secondary', interactive=False, scale=1)

            gen_button.click(lambda: gr.update(interactive=True), None, stop_button)
            #gr.HTML("""
            #<div style="text-align: center; max-width: 100%; margin: 0 auto;">
            #    <body>
            #    </body>
            #</div>
            #""")
        with gr.Row() as block_images:
            choices=[models_test[0][1][0][1][0]]
            output = []
            current_models = []
            #text_disp_models = []
            block_images_liste = []
            block_images_options_liste = []
            button_rand_from_tag=[]
            button_rand_from_all=[]
            button_rand_from_fav=[]
            button_blacklisted=[]
            button_favorites=[]
            choices_plus = extend_choices(choices)
            for i in range(nb_mod_dif):
                with gr.Column(visible=(choices_plus[i*nb_rep] != 'NA')) as block_Temp :
                    block_images_liste.append(block_Temp)
                    with gr.Group():
                        with gr.Row():
                            for j in range(nb_rep):
                                output.append(gr.Image(None, label=choices_plus[i*nb_rep+j],interactive=False, 
                                                       visible=(choices_plus[i*nb_rep+j] != 'NA'),show_label=False,show_share_button=False))
                        for j in range(nb_rep):
                            current_models.append(gr.Textbox(choices_plus[i*nb_rep+j], visible=(j==0),show_label=False))
                        #text_disp_models.append(gr.Textbox(choices_plus[i*nb_rep], visible=(choices_plus[i*nb_rep] != 'NA'),show_label=False))
                        with gr.Row(visible=False) as block_Temp:
                            block_images_options_liste.append(block_Temp)
                            button_rand_from_tag.append(gr.Button("Random\nfrom tag"))
                            button_rand_from_all.append(gr.Button("Random\nfrom all"))
                            button_rand_from_fav.append(gr.Button("Random\nfrom fav"))
                            button_blacklisted.append(gr.Button("put in\nblacklist"))
                            button_favorites.append(gr.Button("put in\nfavorites"))
                        

            #output = update_imgbox([choices[0]])
            #current_models = extend_choices_b([choices[0]])
            
            for m, o in zip(current_models, output):
                gen_event = gr.on(triggers=[gen_button.click, txt_input.submit], fn=gen_fn,
                                inputs=[m, txt_input, neg_input, height, width, steps, cfg, seed], outputs=[o])
                stop_button.click(lambda: gr.update(interactive=False), None, stop_button, cancels=[gen_event])
            
        with gr.Row() as blockPass:
            txt_input_p = gr.Textbox(label="Pass", lines=1)
            test_button = gr.Button(' ')    

        
        with gr.Accordion( open=True, visible=False) as stuffs:
            with gr.Accordion("Advanced",open=False):
                images_options=gr.Checkbox(False,label="Images Options")
                images_options.change(lambda x:[gr.Row(visible=x) for b in range(nb_mod_dif)],[images_options],block_images_options_liste)
                blacklist_perso=gr.Textbox(label="Blacklist perso")
                fav_perso=gr.Textbox(label="Fav perso")
                button_rand_from_tag_all_models=gr.Button("Random all models from tag")
                button_rand_from_all_all_models=gr.Button("Random all models from all")
                button_rand_from_fav_all_models=gr.Button("Random all models from fav")

            
            with gr.Accordion("Warm models",open=False):
                with gr.Row():
                    text_warm_models=gr.Textbox("",label="list of warm model")
                    with gr.Column():
                        text_tag_warm_models=gr.Textbox(lines=1)
                        bool_format_models=gr.Checkbox(label="Format list",value=False)
                        button_search_warm_models=gr.Button("search warm models")
                        button_search_warm_models.click(fonc_search_warm_models,[text_tag_warm_models,bool_format_models],[text_warm_models])
                        button_load_warm_models = gr.Button('Load')
                        button_load_warm_models.click(aff_models_perso_b,text_warm_models,output)
                        button_load_warm_models.click(aff_models_perso_c,text_warm_models,current_models)
                
                
            with gr.Accordion("Gallery",open=False):
                with gr.Row():
                    #global cache_image
                    #global cache_image_actu
                    id_session=gr.Number(visible=False,value=0)
                    gen_button.click(set_session, id_session, id_session)
                    cache_image[f"{id_session.value}"]=[]
                    cache_image_actu[f"{id_session.value}"]=[]
                    with gr.Column():
                        b11 = gr.Button('Load Galerry Actu')
                        b12 = gr.Button('Load Galerry All')
                        b13 = gr.Button('Load Galerry All (sorted)')
                    gallery = gr.Gallery(label="Output", show_download_button=True, elem_classes="gallery",
                                    interactive=False, show_share_button=True, container=True, format="png",
                                    preview=True, object_fit="cover",columns=4,rows=4) 
                    with gr.Column():
                        b21 = gr.Button('Reset Gallery')
                        b22 = gr.Button('Reset Gallery All')
                        b23 = gr.Button('Reset All Sessions')
                        b24 = gr.Button('print info sessions')
                    b11.click(load_gallery_actu,[gallery,id_session],gallery)
                    b12.click(load_gallery,[gallery,id_session],gallery)
                    b13.click(load_gallery_sorted,[gallery,id_session],gallery)
                    b21.click(reset_gallery,[gallery],gallery)
                    b22.click(reset_cache_image,[id_session],gallery)
                    b23.click(reset_cache_image_all_sessions,[],[])
                    b24.click(print_info_sessions,[],[])
                    for m, o in zip(current_models, output):
                        #o.change(add_gallery, [o, m, gallery], [gallery])
                        o.change(add_cache_image,[o,m,id_session],[])
                        o.change(add_cache_image_actu,[o,m,id_session],[])
                gen_button.click(reset_cache_image_actu, [id_session], [])
                gen_button.click(lambda id:gr.Button('Load Galerry All ('+str(len(cache_image[f"{id}"]))+")"), [id_session], [b12])
                
            with gr.Group():
                with gr.Row():
                    #group_tag_choice = gr.Dropdown(label="Lists Tags", show_label=True, choices=list([]) , interactive = True)
                    group_tag_choice = gr.Dropdown(label="Lists Tags", show_label=True, choices=list(models_test), interactive = True,value=models_test[0][1])
                    #group_tag_choice = gr.Dropdown(label="Lists Tags", show_label=True, choices=list(models_test), interactive = True)
                    index_tag=gr.Number(0,visible=False)
                    
                with gr.Row():
                    group_model_choice = gr.Dropdown(label="List of Models with the chosen Tag", show_label=True, choices=list([]), interactive = True)
                    group_model_choice.change(choice_group_b,group_model_choice,output)
                    group_model_choice.change(choice_group_c,group_model_choice,current_models)
                    #group_model_choice.change(choice_group_d,group_model_choice,text_disp_models)
                    group_model_choice.change(choice_group_e,group_model_choice,block_images_liste)
                    group_tag_choice.change(tag_choice,group_tag_choice,group_model_choice)
                    group_tag_choice.change(find_index_tag,group_tag_choice,index_tag)

            with gr.Accordion("Display/Load Models") :
                with gr.Row():
                    txt_list_models=gr.Textbox(label="Models Actu",value="")
                    group_model_choice.change(disp_models,group_model_choice,txt_list_models)
                    
                    with gr.Column():
                        txt_list_perso = gr.Textbox(label='List Models Perso to Load')
                    
                        button_list_perso = gr.Button('Load')
                        button_list_perso.click(aff_models_perso_b,txt_list_perso,output)
                        button_list_perso.click(aff_models_perso_c,txt_list_perso,current_models)
    
            with gr.Row():
                txt_search = gr.Textbox(label='Search in')
                txt_output_search = gr.Textbox(label='Search out')
                button_search = gr.Button('Research')
                button_search.click(search_models,txt_search,txt_output_search)

            with gr.Row():
                txt_search_info = gr.Textbox(label='Search info in')
                txt_output_search_info = gr.Textbox(label='Search info out')
                button_search_info = gr.Button('Research info')
                button_search_info.click(search_info,txt_search_info,txt_output_search_info)
        
            
        with gr.Row():
            test_button.click(test_pass_aff,txt_input_p,[stuffs,blockPass])
            #test_button.click(test_pass,txt_input_p,group_tag_choice)
            
            #text_disp_models = []
            #button_rand_from_tag=[]
            #button_rand_from_all=[]
            button_rand_from_all_all_models.click(rand_from_all_all_models,[],current_models)
            button_rand_from_tag_all_models.click(rand_from_tag_all_models,index_tag,current_models)
            for i in range(nb_mod_dif):
                #######################################################################################################################
                #button_rand_from_tag.click()
                #button_rand_from_all.click()
                #button_rand_from_fav.click()
                button_blacklisted[i].click(add_in_blacklist,[blacklist_perso,current_models[i*nb_rep]],blacklist_perso)
                button_favorites[i].click(add_in_fav,[fav_perso,current_models[i*nb_rep]],fav_perso)



            gr.HTML("""
                <div class="footer">
                <p> Based on the <a href="https://huggingface.co/spaces/derwahnsinn/TestGen">TestGen</a> Space by derwahnsinn, the <a href="https://huggingface.co/spaces/RdnUser77/SpacIO_v1">SpacIO</a> Space by RdnUser77 and Omnibus's Maximum Multiplier!
                </p>
            """)

js_code = """
    
    console.log('ghgh');
"""

with gr.Blocks(theme="Nymbo/Nymbo_Theme", fill_width=True, css="div.float.svelte-1mwvhlq {    position: absolute;    top: var(--block-label-margin);    left: var(--block-label-margin);    background: none;    border: none;}") as demo: 
    gr.Markdown("<script>" + js_code + "</script>")
    make_me()


# https://www.gradio.app/guides/setting-up-a-demo-for-maximum-performance
#demo.queue(concurrency_count=999) # concurrency_count is deprecated in 4.x
demo.queue(default_concurrency_limit=200, max_size=200)
demo.launch(max_threads=400)