Spaces:
Runtime error
Runtime error
import gradio as gr | |
import pandas as pd | |
import random | |
# Sample data: Replace this with your legal QA dataset structure | |
# Assuming columns: 'DocID', 'QueryID', 'Query', 'Segment', 'Label' | |
sample_data = pd.DataFrame({ | |
'DocID': ['Doc1', 'Doc2', 'Doc3', 'Doc4', 'Doc5'], | |
'QueryID': [101, 102, 103, 104, 105], | |
'Query': ['What is the law regarding...', 'How is the case...', 'Definition of legal term...', 'Procedure for filing...', 'Rights of an individual...'], | |
'Segment': ['Segment1', 'Segment2', 'Segment3', 'Segment4', 'Segment5'], | |
'Label': [1, 0, 1, 0, 1] # Sample labels | |
}) | |
# Fake predictions: You should replace these with actual predictions from your test set | |
fake_predictions = { | |
101: 'Positive Response', | |
102: 'Negative Response', | |
103: 'Positive Response', | |
104: 'Negative Response', | |
105: 'Positive Response' | |
} | |
def predict(query_id): | |
# Simulate a model prediction | |
response = fake_predictions.get(query_id, "Unknown QueryID") | |
return response | |
def get_random_row(): | |
# Get a random row from the dataset for demonstration | |
random_row = sample_data.sample().iloc[0] | |
return f"DocID: {random_row['DocID']}, QueryID: {random_row['QueryID']}, Query: {random_row['Query']}, Segment: {random_row['Segment']}" | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.inputs.Dropdown(list(sample_data['QueryID']), label="Select QueryID"), | |
outputs="text", | |
examples=[get_random_row() for _ in range(5)] | |
) | |
iface.launch() | |