Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,336 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import gradio as gr
|
5 |
+
import math
|
6 |
+
from transformers import PreTrainedTokenizerFast
|
7 |
+
import numpy as np
|
8 |
+
from typing import Optional, List, Dict
|
9 |
+
|
10 |
+
class NeuromodulatedAttention(nn.Module):
|
11 |
+
def __init__(self, d_model: int, num_heads: int):
|
12 |
+
super().__init__()
|
13 |
+
self.d_model = d_model
|
14 |
+
self.num_heads = num_heads
|
15 |
+
self.head_dim = d_model // num_heads
|
16 |
+
|
17 |
+
self.qkv = nn.Linear(d_model, 3 * d_model)
|
18 |
+
self.out_proj = nn.Linear(d_model, d_model)
|
19 |
+
|
20 |
+
# Neuromodulation
|
21 |
+
self.dopamine_gate = nn.Linear(d_model, num_heads)
|
22 |
+
self.serotonin_gate = nn.Linear(d_model, num_heads)
|
23 |
+
self.memory_decay = nn.Parameter(torch.ones(num_heads) * 0.99)
|
24 |
+
self.forget_gate = nn.Linear(d_model, num_heads)
|
25 |
+
self.attention_mask = nn.Parameter(torch.ones(num_heads))
|
26 |
+
|
27 |
+
# Memory
|
28 |
+
self.register_buffer('memory_state', torch.zeros(1, num_heads, 1, self.head_dim))
|
29 |
+
|
30 |
+
def update_memory(self, new_info: torch.Tensor, dopamine: torch.Tensor, forget: torch.Tensor):
|
31 |
+
self.memory_state = (
|
32 |
+
self.memory_state * self.memory_decay.view(1, -1, 1, 1) *
|
33 |
+
(1 - forget.unsqueeze(-1)) +
|
34 |
+
dopamine.unsqueeze(-1) * new_info
|
35 |
+
)
|
36 |
+
|
37 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
38 |
+
batch_size, seq_length, _ = x.shape
|
39 |
+
|
40 |
+
# Neuromodulators
|
41 |
+
dopamine = torch.sigmoid(self.dopamine_gate(x.mean(dim=1)))
|
42 |
+
serotonin = torch.sigmoid(self.serotonin_gate(x.mean(dim=1)))
|
43 |
+
forget = torch.sigmoid(self.forget_gate(x.mean(dim=1)))
|
44 |
+
|
45 |
+
# Attention computation
|
46 |
+
qkv = self.qkv(x)
|
47 |
+
qkv = qkv.reshape(batch_size, seq_length, 3, self.num_heads, self.head_dim)
|
48 |
+
qkv = qkv.permute(2, 0, 3, 1, 4)
|
49 |
+
q, k, v = qkv[0], qkv[1], qkv[2]
|
50 |
+
|
51 |
+
# Include memory
|
52 |
+
k = torch.cat([k, self.memory_state.expand(batch_size, -1, -1, -1)], dim=2)
|
53 |
+
v = torch.cat([v, self.memory_state.expand(batch_size, -1, -1, -1)], dim=2)
|
54 |
+
|
55 |
+
# Attention with neuromodulation
|
56 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
57 |
+
scores = scores * serotonin.view(batch_size, self.num_heads, 1, 1)
|
58 |
+
scores = scores * self.attention_mask.view(1, -1, 1, 1)
|
59 |
+
|
60 |
+
attention = F.softmax(scores, dim=-1)
|
61 |
+
x = torch.matmul(attention, v)
|
62 |
+
|
63 |
+
# Update memory
|
64 |
+
self.update_memory(x.mean(dim=2), dopamine, forget)
|
65 |
+
|
66 |
+
x = x.transpose(1, 2).reshape(batch_size, seq_length, self.d_model)
|
67 |
+
return self.out_proj(x)
|
68 |
+
|
69 |
+
class TransformerBlock(nn.Module):
|
70 |
+
def __init__(self, d_model: int, num_heads: int, d_ff: int, dropout: float = 0.1):
|
71 |
+
super().__init__()
|
72 |
+
self.attention = NeuromodulatedAttention(d_model, num_heads)
|
73 |
+
self.norm1 = nn.LayerNorm(d_model)
|
74 |
+
self.norm2 = nn.LayerNorm(d_model)
|
75 |
+
self.ff = nn.Sequential(
|
76 |
+
nn.Linear(d_model, d_ff),
|
77 |
+
nn.ReLU(),
|
78 |
+
nn.Linear(d_ff, d_model),
|
79 |
+
nn.Dropout(dropout)
|
80 |
+
)
|
81 |
+
|
82 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
83 |
+
x = x + self.attention(self.norm1(x))
|
84 |
+
x = x + self.ff(self.norm2(x))
|
85 |
+
return x
|
86 |
+
|
87 |
+
class NeuroTransformer(nn.Module):
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
vocab_size: int,
|
91 |
+
d_model: int = 256,
|
92 |
+
num_heads: int = 4,
|
93 |
+
num_layers: int = 3,
|
94 |
+
d_ff: int = 512,
|
95 |
+
dropout: float = 0.1,
|
96 |
+
max_seq_length: int = 128
|
97 |
+
):
|
98 |
+
super().__init__()
|
99 |
+
self.d_model = d_model
|
100 |
+
self.embedding = nn.Embedding(vocab_size, d_model)
|
101 |
+
self.pos_encoding = self._create_positional_encoding(max_seq_length, d_model)
|
102 |
+
self.layers = nn.ModuleList([
|
103 |
+
TransformerBlock(d_model, num_heads, d_ff, dropout)
|
104 |
+
for _ in range(num_layers)
|
105 |
+
])
|
106 |
+
self.final_layer = nn.Linear(d_model, vocab_size)
|
107 |
+
self.dropout = nn.Dropout(dropout)
|
108 |
+
|
109 |
+
def _create_positional_encoding(self, max_seq_length: int, d_model: int) -> torch.Tensor:
|
110 |
+
pos_encoding = torch.zeros(max_seq_length, d_model)
|
111 |
+
position = torch.arange(0, max_seq_length, dtype=torch.float).unsqueeze(1)
|
112 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
|
113 |
+
pos_encoding[:, 0::2] = torch.sin(position * div_term)
|
114 |
+
pos_encoding[:, 1::2] = torch.cos(position * div_term)
|
115 |
+
return pos_encoding.unsqueeze(0)
|
116 |
+
|
117 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
118 |
+
x = self.embedding(x) * math.sqrt(self.d_model)
|
119 |
+
x = x + self.pos_encoding[:, :x.size(1)].to(x.device)
|
120 |
+
x = self.dropout(x)
|
121 |
+
|
122 |
+
for layer in self.layers:
|
123 |
+
x = layer(x)
|
124 |
+
|
125 |
+
return self.final_layer(x)
|
126 |
+
|
127 |
+
def generate(
|
128 |
+
self,
|
129 |
+
tokenizer: PreTrainedTokenizerFast,
|
130 |
+
prompt: str,
|
131 |
+
max_length: int = 100,
|
132 |
+
temperature: float = 0.7,
|
133 |
+
top_k: int = 50,
|
134 |
+
top_p: float = 0.9
|
135 |
+
) -> str:
|
136 |
+
self.eval()
|
137 |
+
input_ids = tokenizer.encode(prompt, return_tensors="pt")
|
138 |
+
|
139 |
+
with torch.no_grad():
|
140 |
+
for _ in range(max_length):
|
141 |
+
outputs = self(input_ids)
|
142 |
+
next_token_logits = outputs[:, -1, :] / temperature
|
143 |
+
|
144 |
+
# Top-k
|
145 |
+
if top_k > 0:
|
146 |
+
indices_to_remove = next_token_logits < torch.topk(next_token_logits, top_k)[0][..., -1, None]
|
147 |
+
next_token_logits[indices_to_remove] = float('-inf')
|
148 |
+
|
149 |
+
# Top-p
|
150 |
+
if top_p < 1.0:
|
151 |
+
sorted_logits, sorted_indices = torch.sort(next_token_logits, descending=True)
|
152 |
+
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
153 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
154 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
155 |
+
sorted_indices_to_remove[..., 0] = 0
|
156 |
+
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
157 |
+
next_token_logits[indices_to_remove] = float('-inf')
|
158 |
+
|
159 |
+
probs = F.softmax(next_token_logits, dim=-1)
|
160 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
161 |
+
|
162 |
+
if next_token.item() == tokenizer.eos_token_id:
|
163 |
+
break
|
164 |
+
|
165 |
+
input_ids = torch.cat([input_ids, next_token], dim=1)
|
166 |
+
|
167 |
+
return tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
168 |
+
|
169 |
+
class TextGenerator:
|
170 |
+
def __init__(self):
|
171 |
+
self.tokenizer = PreTrainedTokenizerFast.from_pretrained('gpt2')
|
172 |
+
self.model = NeuroTransformer(vocab_size=self.tokenizer.vocab_size)
|
173 |
+
|
174 |
+
def train_on_text(
|
175 |
+
self,
|
176 |
+
text: str,
|
177 |
+
epochs: int,
|
178 |
+
learning_rate: float,
|
179 |
+
batch_size: int,
|
180 |
+
progress=gr.Progress()
|
181 |
+
) -> str:
|
182 |
+
encodings = self.tokenizer(text, truncation=True, padding=True, return_tensors="pt")
|
183 |
+
input_ids = encodings['input_ids']
|
184 |
+
|
185 |
+
dataset = torch.utils.data.TensorDataset(input_ids, input_ids)
|
186 |
+
dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=True)
|
187 |
+
|
188 |
+
optimizer = torch.optim.AdamW(self.model.parameters(), lr=learning_rate)
|
189 |
+
criterion = nn.CrossEntropyLoss()
|
190 |
+
|
191 |
+
logs = []
|
192 |
+
self.model.train()
|
193 |
+
|
194 |
+
for epoch in progress.tqdm(range(epochs)):
|
195 |
+
total_loss = 0
|
196 |
+
for batch in dataloader:
|
197 |
+
optimizer.zero_grad()
|
198 |
+
input_ids, labels = batch
|
199 |
+
outputs = self.model(input_ids)
|
200 |
+
loss = criterion(outputs.view(-1, outputs.size(-1)), labels.view(-1))
|
201 |
+
loss.backward()
|
202 |
+
optimizer.step()
|
203 |
+
total_loss += loss.item()
|
204 |
+
|
205 |
+
avg_loss = total_loss / len(dataloader)
|
206 |
+
logs.append(f"Epoch {epoch+1}/{epochs}, Loss: {avg_loss:.4f}")
|
207 |
+
|
208 |
+
return "\n".join(logs)
|
209 |
+
|
210 |
+
def generate(
|
211 |
+
self,
|
212 |
+
prompt: str,
|
213 |
+
max_length: int,
|
214 |
+
temperature: float,
|
215 |
+
top_k: int,
|
216 |
+
top_p: float
|
217 |
+
) -> str:
|
218 |
+
return self.model.generate(
|
219 |
+
self.tokenizer,
|
220 |
+
prompt,
|
221 |
+
max_length=max_length,
|
222 |
+
temperature=temperature,
|
223 |
+
top_k=top_k,
|
224 |
+
top_p=top_p
|
225 |
+
)
|
226 |
+
|
227 |
+
# Create Gradio interface
|
228 |
+
generator = TextGenerator()
|
229 |
+
|
230 |
+
demo = gr.Blocks()
|
231 |
+
|
232 |
+
with demo:
|
233 |
+
gr.Markdown("# Neuromodulated Text Generator")
|
234 |
+
|
235 |
+
with gr.Tab("Train"):
|
236 |
+
with gr.Row():
|
237 |
+
with gr.Column():
|
238 |
+
train_input = gr.Textbox(
|
239 |
+
label="Training Text",
|
240 |
+
placeholder="Enter text to train on...",
|
241 |
+
lines=5
|
242 |
+
)
|
243 |
+
train_button = gr.Button("Train Model")
|
244 |
+
|
245 |
+
with gr.Column():
|
246 |
+
epochs_slider = gr.Slider(
|
247 |
+
label="Epochs",
|
248 |
+
minimum=1,
|
249 |
+
maximum=50,
|
250 |
+
value=10,
|
251 |
+
step=1
|
252 |
+
)
|
253 |
+
lr_slider = gr.Slider(
|
254 |
+
label="Learning Rate",
|
255 |
+
minimum=1e-5,
|
256 |
+
maximum=1e-3,
|
257 |
+
value=1e-4,
|
258 |
+
step=1e-5
|
259 |
+
)
|
260 |
+
batch_slider = gr.Slider(
|
261 |
+
label="Batch Size",
|
262 |
+
minimum=1,
|
263 |
+
maximum=32,
|
264 |
+
value=4,
|
265 |
+
step=1
|
266 |
+
)
|
267 |
+
|
268 |
+
train_output = gr.Textbox(label="Training Log")
|
269 |
+
|
270 |
+
with gr.Tab("Generate"):
|
271 |
+
with gr.Row():
|
272 |
+
with gr.Column():
|
273 |
+
prompt_input = gr.Textbox(
|
274 |
+
label="Prompt",
|
275 |
+
placeholder="Enter text prompt...",
|
276 |
+
lines=2
|
277 |
+
)
|
278 |
+
generate_button = gr.Button("Generate Text")
|
279 |
+
|
280 |
+
with gr.Column():
|
281 |
+
length_slider = gr.Slider(
|
282 |
+
label="Max Length",
|
283 |
+
minimum=10,
|
284 |
+
maximum=500,
|
285 |
+
value=100,
|
286 |
+
step=10
|
287 |
+
)
|
288 |
+
temp_slider = gr.Slider(
|
289 |
+
label="Temperature",
|
290 |
+
minimum=0.1,
|
291 |
+
maximum=2.0,
|
292 |
+
value=0.7,
|
293 |
+
step=0.1
|
294 |
+
)
|
295 |
+
topk_slider = gr.Slider(
|
296 |
+
label="Top-k",
|
297 |
+
minimum=0,
|
298 |
+
maximum=100,
|
299 |
+
value=50,
|
300 |
+
step=1
|
301 |
+
)
|
302 |
+
topp_slider = gr.Slider(
|
303 |
+
label="Top-p",
|
304 |
+
minimum=0.0,
|
305 |
+
maximum=1.0,
|
306 |
+
value=0.9,
|
307 |
+
step=0.05
|
308 |
+
)
|
309 |
+
|
310 |
+
generate_output = gr.Textbox(label="Generated Text")
|
311 |
+
|
312 |
+
train_button.click(
|
313 |
+
fn=generator.train_on_text,
|
314 |
+
inputs=[
|
315 |
+
train_input,
|
316 |
+
epochs_slider,
|
317 |
+
lr_slider,
|
318 |
+
batch_slider
|
319 |
+
],
|
320 |
+
outputs=train_output
|
321 |
+
)
|
322 |
+
|
323 |
+
generate_button.click(
|
324 |
+
fn=generator.generate,
|
325 |
+
inputs=[
|
326 |
+
prompt_input,
|
327 |
+
length_slider,
|
328 |
+
temp_slider,
|
329 |
+
topk_slider,
|
330 |
+
topp_slider
|
331 |
+
],
|
332 |
+
outputs=generate_output
|
333 |
+
)
|
334 |
+
|
335 |
+
if __name__ == "__main__":
|
336 |
+
demo.launch()
|