Spaces:
Paused
Paused
File size: 16,192 Bytes
2aac0e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
# ------------------------------------------------------------------------
# DINO
# Copyright (c) 2022 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from DINO https://github.com/IDEA-Research/DINO by Feng Li and Hao Zhang.
# ------------------------------------------------------------------------
from typing import Optional, List, Union
import torch
from torch import nn, Tensor
from torch.cuda.amp import autocast
from ...utils.utils import MLP, _get_clones, _get_activation_fn, gen_sineembed_for_position, inverse_sigmoid
from ..pixel_decoder.ops.modules import MSDeformAttn
class TransformerDecoder(nn.Module):
def __init__(self, decoder_layer, num_layers, norm=None,
return_intermediate=False,
d_model=256, query_dim=4,
modulate_hw_attn=True,
num_feature_levels=1,
deformable_decoder=True,
decoder_query_perturber=None,
dec_layer_number=None, # number of queries each layer in decoder
rm_dec_query_scale=True,
dec_layer_share=False,
dec_layer_dropout_prob=None,
cross_track_layer = False,
n_levels = None,
n_heads = None,
n_points = None,
):
super().__init__()
if num_layers > 0:
self.layers = _get_clones(decoder_layer, num_layers, layer_share=dec_layer_share)
else:
self.layers = []
self.num_layers = num_layers
self.norm = norm
self.return_intermediate = return_intermediate
assert return_intermediate, "support return_intermediate only"
self.query_dim = query_dim
assert query_dim in [2, 4], "query_dim should be 2/4 but {}".format(query_dim)
self.num_feature_levels = num_feature_levels
self.ref_point_head = MLP(query_dim // 2 * d_model, d_model, d_model, 2)
if not deformable_decoder:
self.query_pos_sine_scale = MLP(d_model, d_model, d_model, 2)
else:
self.query_pos_sine_scale = None
if rm_dec_query_scale:
self.query_scale = None
else:
raise NotImplementedError
self.query_scale = MLP(d_model, d_model, d_model, 2)
self.bbox_embed = None
self.class_embed = None
self.d_model = d_model
self.modulate_hw_attn = modulate_hw_attn
self.deformable_decoder = deformable_decoder
if not deformable_decoder and modulate_hw_attn:
self.ref_anchor_head = MLP(d_model, d_model, 2, 2)
else:
self.ref_anchor_head = None
self.decoder_query_perturber = decoder_query_perturber
self.box_pred_damping = None
self.dec_layer_number = dec_layer_number
if dec_layer_number is not None:
assert isinstance(dec_layer_number, list)
assert len(dec_layer_number) == num_layers
# assert dec_layer_number[0] ==
self.dec_layer_dropout_prob = dec_layer_dropout_prob
if dec_layer_dropout_prob is not None:
assert isinstance(dec_layer_dropout_prob, list)
assert len(dec_layer_dropout_prob) == num_layers
for i in dec_layer_dropout_prob:
assert 0.0 <= i <= 1.0
if cross_track_layer: # add a cross-attention-layer before track ffn head
self.cross_track_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
self.cross_track = True
else:
self.cross_track = False
self._reset_parameters()
def _reset_parameters(self):
for p in self.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
for m in self.modules():
if isinstance(m, MSDeformAttn):
m._reset_parameters()
@staticmethod
def with_pos_embed(tensor, pos):
return tensor if pos is None else tensor + pos
def forward(self, tgt, memory,
tgt_mask: Optional[Tensor] = None,
memory_mask: Optional[Tensor] = None,
tgt_key_padding_mask: Optional[Tensor] = None,
memory_key_padding_mask: Optional[Tensor] = None,
pos: Optional[Tensor] = None,
refpoints_unsigmoid: Optional[Tensor] = None, # num_queries, bs, 2
# for memory
level_start_index: Optional[Tensor] = None, # num_levels
spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2
valid_ratios: Optional[Tensor] = None,
task = None,
extra = None,
):
"""
Input:
- tgt: nq, bs, d_model
- memory: hw, bs, d_model
- pos: hw, bs, d_model
- refpoints_unsigmoid: nq, bs, 2/4
- valid_ratios/spatial_shapes: bs, nlevel, 2
"""
output = tgt
device = tgt.device
intermediate = []
reference_points = refpoints_unsigmoid.sigmoid().to(device)
ref_points = [reference_points]
for layer_id, layer in enumerate(self.layers):
# preprocess ref points
if self.training and self.decoder_query_perturber is not None and layer_id != 0:
reference_points = self.decoder_query_perturber(reference_points)
reference_points_input = reference_points[:, :, None] \
* torch.cat([valid_ratios, valid_ratios], -1)[None, :] # nq, bs, nlevel, 4
query_sine_embed = gen_sineembed_for_position(reference_points_input[:, :, 0, :]) # nq, bs, 256*2
raw_query_pos = self.ref_point_head(query_sine_embed) # nq, bs, 256
pos_scale = self.query_scale(output) if self.query_scale is not None else 1
query_pos = pos_scale * raw_query_pos
output = layer(
tgt=output,
tgt_query_pos=query_pos,
tgt_query_sine_embed=query_sine_embed,
tgt_key_padding_mask=tgt_key_padding_mask,
tgt_reference_points=reference_points_input,
memory=memory,
memory_key_padding_mask=memory_key_padding_mask,
memory_level_start_index=level_start_index,
memory_spatial_shapes=spatial_shapes,
memory_pos=pos,
self_attn_mask=tgt_mask,
cross_attn_mask=memory_mask,
task = task,
extra = extra,
layer_id = layer_id,
)
# iter update
if self.bbox_embed is not None:
reference_before_sigmoid = inverse_sigmoid(reference_points)
delta_unsig = self.bbox_embed[layer_id](output).to(device)
outputs_unsig = delta_unsig + reference_before_sigmoid
new_reference_points = outputs_unsig.sigmoid()
reference_points = new_reference_points.detach()
# if layer_id != self.num_layers - 1:
ref_points.append(new_reference_points)
intermediate.append(self.norm(output))
if self.cross_track:
tgt_track = self.cross_track_attn(self.with_pos_embed(output, query_pos).transpose(0, 1),
reference_points_input.transpose(0, 1).contiguous(),
memory.transpose(0, 1), spatial_shapes, level_start_index,
memory_key_padding_mask).transpose(0, 1)
tgt_track = tgt_track + output
tgt_track = tgt_track.transpose(0, 1)
else:
tgt_track = None
return [
[itm_out.transpose(0, 1) for itm_out in intermediate],
[itm_refpoint.transpose(0, 1) for itm_refpoint in ref_points], tgt_track
]
class DeformableTransformerDecoderLayer(nn.Module):
def __init__(self, d_model=256, d_ffn=1024,
dropout=0.1, activation="relu",
n_levels=4, n_heads=8, n_points=4,
use_deformable_box_attn=False,
key_aware_type=None,
):
super().__init__()
self.n_heads = n_heads
# cross attention
if use_deformable_box_attn:
raise NotImplementedError
else:
self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
self.dropout1 = nn.Dropout(dropout)
self.norm1 = nn.LayerNorm(d_model)
# self attention
self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
self.dropout2 = nn.Dropout(dropout)
self.norm2 = nn.LayerNorm(d_model)
# ffn
self.linear1 = nn.Linear(d_model, d_ffn)
self.activation = _get_activation_fn(activation)
self.dropout3 = nn.Dropout(dropout)
self.linear2 = nn.Linear(d_ffn, d_model)
self.dropout4 = nn.Dropout(dropout)
self.norm3 = nn.LayerNorm(d_model)
self.key_aware_type = key_aware_type
self.key_aware_proj = None
def rm_self_attn_modules(self):
self.self_attn = None
self.dropout2 = None
self.norm2 = None
@staticmethod
def with_pos_embed(tensor, pos):
return tensor if pos is None else tensor + pos
def forward_ffn(self, tgt):
tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
tgt = tgt + self.dropout4(tgt2)
tgt = self.norm3(tgt)
return tgt
@autocast(enabled=False)
def forward(self,
# for tgt
tgt: Optional[Tensor], # nq, bs, d_model
tgt_query_pos: Optional[Tensor] = None, # pos for query. MLP(Sine(pos))
tgt_query_sine_embed: Optional[Tensor] = None, # pos for query. Sine(pos)
tgt_key_padding_mask: Optional[Tensor] = None,
tgt_reference_points: Optional[Tensor] = None, # nq, bs, 4
# for memory
memory: Optional[Tensor] = None, # hw, bs, d_model
memory_key_padding_mask: Optional[Tensor] = None,
memory_level_start_index: Optional[Tensor] = None, # num_levels
memory_spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2
memory_pos: Optional[Tensor] = None, # pos for memory
# sa
self_attn_mask: Optional[Tensor] = None, # mask used for self-attention
cross_attn_mask: Optional[Tensor] = None, # mask used for cross-attention
task = None,
extra = None,
layer_id = None,
):
"""
Input:
- tgt/tgt_query_pos: nq, bs, d_model
-
"""
# self attention
if task in ['grounding', 'rvos'] or 'visual_prompt_tokens' in extra:
if self_attn_mask is not None: # training with denoising query
if 'visual_prompt_tokens' in extra: # has visual prompt
level_index = layer_id % 3 # src level : self.num_feature_levels
prompt_tokens = extra['visual_prompt_tokens'][level_index]
promot_pos = prompt_tokens.detach().clone()
prompt_mask = extra['visual_prompt_nonzero_mask'][level_index]
else: #grounding
prompt_tokens = extra['grounding_tokens']
promot_pos = prompt_tokens.detach().clone()
prompt_mask = extra['grounding_nonzero_mask']
ori_size = tgt.shape[0]
new_mask_size = tgt.shape[0]+prompt_tokens.shape[0]
new_self_attn_mask = torch.zeros((tgt.shape[1], new_mask_size, new_mask_size), dtype=torch.bool, device=tgt.device)
new_self_attn_mask[:,:ori_size,:ori_size] = self_attn_mask.unsqueeze(0).repeat(tgt.shape[1],1,1) #denoising matching keepmask
# prompt to prompt mask set to True if they are not valid
# new_self_attn_mask[:,ori_size:,ori_size:][prompt_mask] = True
# new_self_attn_mask[:,ori_size:,ori_size:].transpose(1,2)[prompt_mask] = True
# prompt2obj and obj2prompt mask set to True
# new_self_attn_mask[:,ori_size-300:ori_size,ori_size:][] = True
new_self_attn_mask[:,:ori_size,ori_size:].transpose(1,2)[prompt_mask] = True
new_self_attn_mask[:,ori_size:,:ori_size][prompt_mask] = True
# new_self_attn_mask[:,ori_size:,ori_size-300:ori_size].transpose(1,2)[] = True
new_self_attn_mask = new_self_attn_mask.repeat_interleave(self.n_heads, dim=0)
else: # with out denoising query
if 'visual_prompt_tokens' in extra: # has visual prompt
level_index = layer_id % 3 # src level : self.num_feature_levels
prompt_tokens = extra['visual_prompt_tokens'][level_index]
promot_pos = prompt_tokens.detach().clone()
prompt_mask = extra['visual_prompt_nonzero_mask'][level_index]
else: #grounding
prompt_tokens = extra['grounding_tokens']
promot_pos = prompt_tokens.detach().clone()
prompt_mask = extra['grounding_nonzero_mask']
ori_size = tgt.shape[0]
new_mask_size = tgt.shape[0]+prompt_tokens.shape[0]
new_self_attn_mask = torch.zeros((tgt.shape[1], new_mask_size, new_mask_size), dtype=torch.bool, device=tgt.device)
new_self_attn_mask[:,:ori_size,ori_size:].transpose(1,2)[prompt_mask] = True
new_self_attn_mask[:,ori_size:,:ori_size][prompt_mask] = True
new_self_attn_mask = new_self_attn_mask.repeat_interleave(self.n_heads, dim=0)
if self.self_attn is not None:
tgt = torch.cat([tgt,prompt_tokens],dim=0)
tgt_query_pos = torch.cat([tgt_query_pos,promot_pos],dim=0)
q = k = self.with_pos_embed(tgt, tgt_query_pos)
tgt2 = self.self_attn(q, k, tgt, attn_mask=new_self_attn_mask)[0]
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
tgt = tgt[:ori_size]
tgt_query_pos = tgt_query_pos[:ori_size]
else:
if self.self_attn is not None:
q = k = self.with_pos_embed(tgt, tgt_query_pos)
tgt2 = self.self_attn(q, k, tgt, attn_mask=self_attn_mask)[0]
tgt = tgt + self.dropout2(tgt2)
tgt = self.norm2(tgt)
# cross attention
if self.key_aware_type is not None:
if self.key_aware_type == 'mean':
tgt = tgt + memory.mean(0, keepdim=True)
elif self.key_aware_type == 'proj_mean':
tgt = tgt + self.key_aware_proj(memory).mean(0, keepdim=True)
else:
raise NotImplementedError("Unknown key_aware_type: {}".format(self.key_aware_type))
tgt2 = self.cross_attn(self.with_pos_embed(tgt, tgt_query_pos).transpose(0, 1),
tgt_reference_points.transpose(0, 1).contiguous(),
memory.transpose(0, 1), memory_spatial_shapes, memory_level_start_index,
memory_key_padding_mask).transpose(0, 1)
tgt = tgt + self.dropout1(tgt2)
tgt = self.norm1(tgt)
# ffn
tgt = self.forward_ffn(tgt)
return tgt
|