Spaces:
Paused
Paused
File size: 30,566 Bytes
2aac0e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 |
# ------------------------------------------------------------------------
# DINO
# Copyright (c) 2022 IDEA. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------
# Modified from Mask2Former https://github.com/facebookresearch/Mask2Former by Feng Li and Hao Zhang.
import logging
import fvcore.nn.weight_init as weight_init
import torch
from torch import nn
from torch.nn import functional as F
from detectron2.config import configurable
from detectron2.layers import Conv2d
from detectron2.utils.registry import Registry
from detectron2.structures import BitMasks
from timm.models.layers import trunc_normal_
from .dino_decoder import TransformerDecoder, DeformableTransformerDecoderLayer
from ...utils.utils import MLP, gen_encoder_output_proposals, inverse_sigmoid
from ...utils import box_ops
TRANSFORMER_DECODER_REGISTRY = Registry("TRANSFORMER_MODULE")
TRANSFORMER_DECODER_REGISTRY.__doc__ = """
Registry for transformer module in MaskDINO.
"""
def build_transformer_decoder(cfg, in_channels, lang_encoder, mask_classification=True):
"""
Build a instance embedding branch from `cfg.MODEL.INS_EMBED_HEAD.NAME`.
"""
name = cfg.MODEL.MaskDINO.TRANSFORMER_DECODER_NAME
return TRANSFORMER_DECODER_REGISTRY.get(name)(cfg, in_channels, lang_encoder, mask_classification)
@TRANSFORMER_DECODER_REGISTRY.register()
class MaskDINODecoder(nn.Module):
@configurable
def __init__(
self,
in_channels,
lang_encoder,
mask_classification=True,
*,
num_classes: int,
hidden_dim: int,
num_queries: int,
nheads: int,
dim_feedforward: int,
dec_layers: int,
mask_dim: int,
dim_projection: int,
enforce_input_project: bool,
two_stage: bool,
dn: str,
noise_scale:float,
dn_num:int,
initialize_box_type:bool,
initial_pred:bool,
learn_tgt: bool,
total_num_feature_levels: int = 4,
dropout: float = 0.0,
activation: str = 'relu',
nhead: int = 8,
dec_n_points: int = 4,
return_intermediate_dec: bool = True,
query_dim: int = 4,
dec_layer_share: bool = False,
semantic_ce_loss: bool = False,
cross_track_layer: bool = False,
):
"""
NOTE: this interface is experimental.
Args:
in_channels: channels of the input features
mask_classification: whether to add mask classifier or not
num_classes: number of classes
hidden_dim: Transformer feature dimension
num_queries: number of queries
nheads: number of heads
dim_feedforward: feature dimension in feedforward network
enc_layers: number of Transformer encoder layers
dec_layers: number of Transformer decoder layers
pre_norm: whether to use pre-LayerNorm or not
mask_dim: mask feature dimension
enforce_input_project: add input project 1x1 conv even if input
channels and hidden dim is identical
d_model: transformer dimension
dropout: dropout rate
activation: activation function
nhead: num heads in multi-head attention
dec_n_points: number of sampling points in decoder
return_intermediate_dec: return the intermediate results of decoder
query_dim: 4 -> (x, y, w, h)
dec_layer_share: whether to share each decoder layer
semantic_ce_loss: use ce loss for semantic segmentation
"""
super().__init__()
assert mask_classification, "Only support mask classification model"
self.mask_classification = mask_classification
self.num_feature_levels = total_num_feature_levels
self.initial_pred = initial_pred
self.lang_encoder = lang_encoder
# define Transformer decoder here
self.dn=dn
self.learn_tgt = learn_tgt
self.noise_scale=noise_scale
self.dn_num=dn_num
self.num_heads = nheads
self.num_layers = dec_layers
self.two_stage=two_stage
self.initialize_box_type = initialize_box_type
self.total_num_feature_levels = total_num_feature_levels
self.num_queries = num_queries
self.semantic_ce_loss = semantic_ce_loss
# learnable query features
if not two_stage or self.learn_tgt:
self.query_feat = nn.Embedding(num_queries, hidden_dim)
if not two_stage and initialize_box_type == 'no':
self.query_embed = nn.Embedding(num_queries, 4)
if two_stage:
self.enc_output = nn.Linear(hidden_dim, hidden_dim)
self.enc_output_norm = nn.LayerNorm(hidden_dim)
self.input_proj = nn.ModuleList()
for _ in range(self.num_feature_levels):
if in_channels != hidden_dim or enforce_input_project:
self.input_proj.append(Conv2d(in_channels, hidden_dim, kernel_size=1))
weight_init.c2_xavier_fill(self.input_proj[-1])
else:
self.input_proj.append(nn.Sequential())
self.num_classes = {
'obj365':100,
'obj365_clip':100,
'lvis':100,
'openimage':100,
'lvis_clip':100,
'openimage_clip':100,
'grit':100,
'vg':200,
'coco':80,
'coco_clip':80,
'grounding':1,
'rvos':1,
'sa1b':1,
'sa1b_clip':1,
'bdd_det':10,
'bdd_inst':8,
'ytvis19':40,
'image_yt19':40,
'image_yt21':40,
'bdd_track_seg':8,
'bdd_track_box':8,
'ovis':25,
'image_o':25,
'ytvis21':40,
'uvo_video': 81,
'ytbvos':1,
}
# output FFNs
assert self.mask_classification, "why not class embedding?"
self.confidence_score = MLP(hidden_dim, hidden_dim, 1, 2)
self.category_embed = nn.Parameter(torch.rand(hidden_dim, dim_projection))
# trunc_normal_(self.category_embed, std=.02)
# self.track_embed = MLP(hidden_dim, hidden_dim, hidden_dim, 3)
self.coco_label_enc = nn.Embedding(80,hidden_dim)
self.obj365_label_enc = nn.Embedding(100, hidden_dim)
self.vg_label_enc = nn.Embedding(200, hidden_dim)
self.grounding_label_enc = nn.Embedding(1,hidden_dim)
self.ytvis19_label_enc = nn.Embedding(40,hidden_dim)
self.ytvis21_label_enc = nn.Embedding(40,hidden_dim)
self.ovis_label_enc = nn.Embedding(25,hidden_dim)
self.uvo_label_enc = nn.Embedding(81,hidden_dim)
self.bdd_det = nn.Embedding(10,hidden_dim)
self.bdd_inst = nn.Embedding(8,hidden_dim)
self.label_enc = {
'coco': self.coco_label_enc,
'coco_clip': self.coco_label_enc,
'coconomask': self.coco_label_enc,
'obj365': self.obj365_label_enc,
'lvis': self.obj365_label_enc,
'openimage': self.obj365_label_enc,
'grit': self.obj365_label_enc,
'vg': self.vg_label_enc,
'obj365_clip': self.obj365_label_enc,
'lvis_clip': self.obj365_label_enc,
'openimage_clip': self.obj365_label_enc,
'bdd_det':self.bdd_det,
'bdd_inst':self.bdd_inst,
'bdd_track_seg':self.bdd_inst,
'bdd_track_box':self.bdd_inst,
'sa1b': self.grounding_label_enc,
'sa1b_clip': self.grounding_label_enc,
'grounding': self.grounding_label_enc,
'rvos': self.grounding_label_enc,
'uvo_video':self.uvo_label_enc,
'ytvis19':self.ytvis19_label_enc,
'image_yt19': self.ytvis19_label_enc,
'ytvis21':self.ytvis21_label_enc,
'image_yt21':self.ytvis21_label_enc,
'ovis':self.ovis_label_enc,
'image_o': self.ovis_label_enc,
'burst':self.grounding_label_enc,
'ytbvos':self.grounding_label_enc,
}
self.mask_embed = MLP(hidden_dim, hidden_dim, mask_dim, 3)
# init decoder
self.decoder_norm = decoder_norm = nn.LayerNorm(hidden_dim)
decoder_layer = DeformableTransformerDecoderLayer(hidden_dim, dim_feedforward,
dropout, activation,
self.num_feature_levels, nhead, dec_n_points)
self.decoder = TransformerDecoder(decoder_layer, self.num_layers, decoder_norm,
return_intermediate=return_intermediate_dec,
d_model=hidden_dim, query_dim=query_dim,
num_feature_levels=self.num_feature_levels,
dec_layer_share=dec_layer_share,
cross_track_layer = cross_track_layer,
n_levels=self.num_feature_levels, n_heads=nhead, n_points=dec_n_points
)
self.cross_track_layer = cross_track_layer
self.hidden_dim = hidden_dim
self._bbox_embed = _bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
nn.init.constant_(_bbox_embed.layers[-1].weight.data, 0)
nn.init.constant_(_bbox_embed.layers[-1].bias.data, 0)
box_embed_layerlist = [_bbox_embed for i in range(self.num_layers)] # share box prediction each layer
self.bbox_embed = nn.ModuleList(box_embed_layerlist)
self.decoder.bbox_embed = self.bbox_embed
@classmethod
def from_config(cls, cfg, in_channels, lang_encoder, mask_classification):
ret = {}
ret["in_channels"] = in_channels
ret["lang_encoder"] = lang_encoder
ret["mask_classification"] = mask_classification
ret["dim_projection"] = cfg.MODEL.DIM_PROJ
ret["num_classes"] = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES
ret["hidden_dim"] = cfg.MODEL.MaskDINO.HIDDEN_DIM
ret["num_queries"] = cfg.MODEL.MaskDINO.NUM_OBJECT_QUERIES
# Transformer parameters:
ret["nheads"] = cfg.MODEL.MaskDINO.NHEADS
ret["dim_feedforward"] = cfg.MODEL.MaskDINO.DIM_FEEDFORWARD
ret["dec_layers"] = cfg.MODEL.MaskDINO.DEC_LAYERS
ret["enforce_input_project"] = cfg.MODEL.MaskDINO.ENFORCE_INPUT_PROJ
ret["mask_dim"] = cfg.MODEL.SEM_SEG_HEAD.MASK_DIM
ret["two_stage"] =cfg.MODEL.MaskDINO.TWO_STAGE
ret["initialize_box_type"] = cfg.MODEL.MaskDINO.INITIALIZE_BOX_TYPE # ['no', 'bitmask', 'mask2box']
ret["dn"]=cfg.MODEL.MaskDINO.DN
ret["noise_scale"] =cfg.MODEL.MaskDINO.DN_NOISE_SCALE
ret["dn_num"] =cfg.MODEL.MaskDINO.DN_NUM
ret["initial_pred"] =cfg.MODEL.MaskDINO.INITIAL_PRED
ret["learn_tgt"] = cfg.MODEL.MaskDINO.LEARN_TGT
ret["total_num_feature_levels"] = cfg.MODEL.SEM_SEG_HEAD.TOTAL_NUM_FEATURE_LEVELS
ret["semantic_ce_loss"] = cfg.MODEL.MaskDINO.TEST.SEMANTIC_ON and cfg.MODEL.MaskDINO.SEMANTIC_CE_LOSS and ~cfg.MODEL.MaskDINO.TEST.PANOPTIC_ON
ret["cross_track_layer"] = cfg.MODEL.CROSS_TRACK
return ret
def prepare_for_dn(self, targets, tgt, refpoint_emb, batch_size,task):
"""
modified from dn-detr. You can refer to dn-detr
https://github.com/IDEA-Research/DN-DETR/blob/main/models/dn_dab_deformable_detr/dn_components.py
for more details
:param dn_args: scalar, noise_scale
:param tgt: original tgt (content) in the matching part
:param refpoint_emb: positional anchor queries in the matching part
:param batch_size: bs
"""
if self.training:
scalar, noise_scale = self.dn_num,self.noise_scale
known = [(torch.ones_like(t['labels'])).cuda() for t in targets]
know_idx = [torch.nonzero(t) for t in known]
known_num = [sum(k) for k in known]
# use fix number of dn queries
if max(known_num)>0:
scalar = scalar//(int(max(known_num)))
else:
scalar = 0
if scalar == 0:
input_query_label = None
input_query_bbox = None
attn_mask = None
mask_dict = None
return input_query_label, input_query_bbox, attn_mask, mask_dict
# can be modified to selectively denosie some label or boxes; also known label prediction
unmask_bbox = unmask_label = torch.cat(known)
labels = torch.cat([t['labels'] for t in targets])
boxes = torch.cat([t['boxes'] for t in targets])
batch_idx = torch.cat([torch.full_like(t['labels'].long(), i) for i, t in enumerate(targets)])
# known
known_indice = torch.nonzero(unmask_label + unmask_bbox)
known_indice = known_indice.view(-1)
# noise
known_indice = known_indice.repeat(scalar, 1).view(-1)
known_labels = labels.repeat(scalar, 1).view(-1)
known_bid = batch_idx.repeat(scalar, 1).view(-1)
known_bboxs = boxes.repeat(scalar, 1)
known_labels_expaned = known_labels.clone()
known_bbox_expand = known_bboxs.clone()
# noise on the label
if noise_scale > 0:
p = torch.rand_like(known_labels_expaned.float())
chosen_indice = torch.nonzero(p < (noise_scale * 0.5)).view(-1) # half of bbox prob
new_label = torch.randint_like(chosen_indice, 0, self.num_classes[task]) # randomly put a new one here
known_labels_expaned.scatter_(0, chosen_indice, new_label)
if noise_scale > 0:
diff = torch.zeros_like(known_bbox_expand)
diff[:, :2] = known_bbox_expand[:, 2:] / 2
diff[:, 2:] = known_bbox_expand[:, 2:]
known_bbox_expand += torch.mul((torch.rand_like(known_bbox_expand) * 2 - 1.0),
diff).cuda() * noise_scale
known_bbox_expand = known_bbox_expand.clamp(min=0.0, max=1.0)
m = known_labels_expaned.long().to('cuda')
input_label_embed = self.label_enc[task](m)
input_bbox_embed = inverse_sigmoid(known_bbox_expand)
single_pad = int(max(known_num))
pad_size = int(single_pad * scalar)
padding_label = torch.zeros(pad_size, self.hidden_dim).cuda()
padding_bbox = torch.zeros(pad_size, 4).cuda()
if not refpoint_emb is None:
input_query_label = torch.cat([padding_label, tgt], dim=0).repeat(batch_size, 1, 1)
input_query_bbox = torch.cat([padding_bbox, refpoint_emb], dim=0).repeat(batch_size, 1, 1)
else:
input_query_label=padding_label.repeat(batch_size, 1, 1)
input_query_bbox = padding_bbox.repeat(batch_size, 1, 1)
# map
map_known_indice = torch.tensor([]).to('cuda')
if len(known_num):
map_known_indice = torch.cat([torch.tensor(range(num)) for num in known_num]) # [1,2, 1,2,3]
map_known_indice = torch.cat([map_known_indice + single_pad * i for i in range(scalar)]).long()
if len(known_bid):
input_query_label[(known_bid.long(), map_known_indice)] = input_label_embed
input_query_bbox[(known_bid.long(), map_known_indice)] = input_bbox_embed
tgt_size = pad_size + self.num_queries
attn_mask = torch.ones(tgt_size, tgt_size).to('cuda') < 0
# match query cannot see the reconstruct
attn_mask[pad_size:, :pad_size] = True
# reconstruct cannot see each other
for i in range(scalar):
if i == 0:
attn_mask[single_pad * i:single_pad * (i + 1), single_pad * (i + 1):pad_size] = True
if i == scalar - 1:
attn_mask[single_pad * i:single_pad * (i + 1), :single_pad * i] = True
else:
attn_mask[single_pad * i:single_pad * (i + 1), single_pad * (i + 1):pad_size] = True
attn_mask[single_pad * i:single_pad * (i + 1), :single_pad * i] = True
mask_dict = {
'known_indice': torch.as_tensor(known_indice).long(),
'batch_idx': torch.as_tensor(batch_idx).long(),
'map_known_indice': torch.as_tensor(map_known_indice).long(),
'known_lbs_bboxes': (known_labels, known_bboxs),
'know_idx': know_idx,
'pad_size': pad_size,
'scalar': scalar,
}
else:
if not refpoint_emb is None:
input_query_label = tgt.repeat(batch_size, 1, 1)
input_query_bbox = refpoint_emb.repeat(batch_size, 1, 1)
else:
input_query_label=None
input_query_bbox=None
attn_mask = None
mask_dict=None
# 100*batch*256
if not input_query_bbox is None:
input_query_label = input_query_label
input_query_bbox = input_query_bbox
return input_query_label,input_query_bbox,attn_mask,mask_dict
def dn_post_process(self,outputs_class,outputs_score,outputs_coord,mask_dict,outputs_mask):
"""
post process of dn after output from the transformer
put the dn part in the mask_dict
"""
assert mask_dict['pad_size'] > 0
output_known_class = outputs_class[:, :, :mask_dict['pad_size'], :]
outputs_class = outputs_class[:, :, mask_dict['pad_size']:, :]
output_known_score = outputs_score[:, :, :mask_dict['pad_size'], :]
outputs_score = outputs_score[:, :, mask_dict['pad_size']:, :]
output_known_coord = outputs_coord[:, :, :mask_dict['pad_size'], :]
outputs_coord = outputs_coord[:, :, mask_dict['pad_size']:, :]
if outputs_mask is not None:
output_known_mask = outputs_mask[:, :, :mask_dict['pad_size'], :]
outputs_mask = outputs_mask[:, :, mask_dict['pad_size']:, :]
out = {'pred_logits': output_known_class[-1], 'pred_scores':output_known_score[-1],'pred_boxes': output_known_coord[-1],'pred_masks': output_known_mask[-1]}
out['aux_outputs'] = self._set_aux_loss(output_known_class, output_known_score, output_known_mask, output_known_coord)
mask_dict['output_known_lbs_bboxes']=out
return outputs_class, outputs_score, outputs_coord, outputs_mask
def get_valid_ratio(self, mask):
_, H, W = mask.shape
valid_H = torch.sum(~mask[:, :, 0], 1)
valid_W = torch.sum(~mask[:, 0, :], 1)
valid_ratio_h = valid_H.float() / H
valid_ratio_w = valid_W.float() / W
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
return valid_ratio
def pred_box(self, reference, hs, ref0=None):
"""
:param reference: reference box coordinates from each decoder layer
:param hs: content
:param ref0: whether there are prediction from the first layer
"""
device = reference[0].device
if ref0 is None:
outputs_coord_list = []
else:
outputs_coord_list = [ref0.to(device)]
for dec_lid, (layer_ref_sig, layer_bbox_embed, layer_hs) in enumerate(zip(reference[:-1], self.bbox_embed, hs)):
layer_delta_unsig = layer_bbox_embed(layer_hs).to(device)
layer_outputs_unsig = layer_delta_unsig + inverse_sigmoid(layer_ref_sig).to(device)
layer_outputs_unsig = layer_outputs_unsig.sigmoid()
outputs_coord_list.append(layer_outputs_unsig)
outputs_coord_list = torch.stack(outputs_coord_list)
return outputs_coord_list
def forward(self, x, mask_features, extra, task, masks, targets=None):
"""
:param x: input, a list of multi-scale feature
:param mask_features: is the per-pixel embeddings with resolution 1/4 of the original image,
obtained by fusing backbone encoder encoded features. This is used to produce binary masks.
:param masks: mask in the original image
:param targets: used for denoising training
"""
if 'spatial_query_pos_mask' in extra:
visual_P = True
else:
visual_P = False
assert len(x) == self.num_feature_levels
device = x[0].device
size_list = []
# disable mask, it does not affect performance
enable_mask = 0
if masks is not None:
for src in x:
if src.size(2) % 32 or src.size(3) % 32:
enable_mask = 1
if enable_mask == 0:
masks = [torch.zeros((src.size(0), src.size(2), src.size(3)), device=src.device, dtype=torch.bool) for src in x]
src_flatten = []
mask_flatten = []
spatial_shapes = []
for i in range(self.num_feature_levels):
idx=self.num_feature_levels-1-i
bs, c , h, w=x[idx].shape
size_list.append(x[i].shape[-2:])
spatial_shapes.append(x[idx].shape[-2:])
src_flatten.append(self.input_proj[idx](x[idx]).flatten(2).transpose(1, 2))
mask_flatten.append(masks[i].flatten(1))
src_flatten = torch.cat(src_flatten, 1) # bs, \sum{hxw}, c
mask_flatten = torch.cat(mask_flatten, 1) # bs, \sum{hxw}
spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device)
level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))
valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)
predictions_federate = []
predictions_score = []
predictions_class = []
predictions_mask = []
if self.two_stage:
output_memory, output_proposals = gen_encoder_output_proposals(src_flatten, mask_flatten, spatial_shapes)
output_memory = self.enc_output_norm(self.enc_output(output_memory))
if task in ['grounding','rvos']:
class_embed = output_memory @ self.category_embed
enc_outputs_class_unselected = torch.einsum("bqc,bc->bq", class_embed, extra['grounding_class']).unsqueeze(-1) #[bz,numq,1]
elif visual_P:
enc_outputs_class_unselected = self.confidence_score(output_memory)
else:
class_embed = output_memory @ self.category_embed # [bz,num_q,projectdim]
enc_outputs_class_unselected = torch.einsum("bqc,nc->bqn", class_embed, extra['class_embeddings']) #[bz,n,80]
enc_outputs_coord_unselected = self._bbox_embed(
output_memory) + output_proposals # (bs, \sum{hw}, 4) unsigmoid
topk = self.num_queries
topk_proposals = torch.topk(enc_outputs_class_unselected.max(-1)[0], topk, dim=1)[1]
refpoint_embed_undetach = torch.gather(enc_outputs_coord_unselected, 1,
topk_proposals.unsqueeze(-1).repeat(1, 1, 4)) # unsigmoid
refpoint_embed = refpoint_embed_undetach.detach() #[bz,num_q,4]
tgt_undetach = torch.gather(output_memory, 1,
topk_proposals.unsqueeze(-1).repeat(1, 1, self.hidden_dim)) # unsigmoid #[bz,num_q.256]
conf_score, outputs_class, outputs_mask,_ = self.forward_prediction_heads(tgt_undetach.transpose(0, 1), mask_features, task, extra, mask_dict = None)
tgt = tgt_undetach.detach()
if self.learn_tgt:
tgt = self.query_feat.weight[None].repeat(bs, 1, 1)
interm_outputs=dict()
interm_outputs['pred_logits'] = outputs_class
interm_outputs['pred_scores'] = conf_score
interm_outputs['pred_boxes'] = refpoint_embed_undetach.sigmoid()
interm_outputs['pred_masks'] = outputs_mask
elif not self.two_stage:
tgt = self.query_feat.weight[None].repeat(bs, 1, 1)
refpoint_embed = self.query_embed.weight[None].repeat(bs, 1, 1)
tgt_mask = None
mask_dict = None
if self.dn != "no" and self.training:
assert targets is not None
input_query_label, input_query_bbox, tgt_mask, mask_dict = \
self.prepare_for_dn(targets, None, None, x[0].shape[0],task)
if mask_dict is not None:
tgt=torch.cat([input_query_label, tgt],dim=1)
# direct prediction from the matching and denoising part in the begining
if self.initial_pred:
conf_score, outputs_class, outputs_mask, pred_federat = self.forward_prediction_heads(tgt.transpose(0, 1), mask_features, task, extra, mask_dict, self.training)
predictions_score.append(conf_score)
predictions_class.append(outputs_class)
predictions_mask.append(outputs_mask)
predictions_federate.append(pred_federat)
if self.dn != "no" and self.training and mask_dict is not None:
refpoint_embed=torch.cat([input_query_bbox,refpoint_embed],dim=1)
hs, references, cross_track_embed = self.decoder(
tgt=tgt.transpose(0, 1),
memory=src_flatten.transpose(0, 1),
memory_key_padding_mask=mask_flatten,
pos=None,
refpoints_unsigmoid=refpoint_embed.transpose(0, 1),
level_start_index=level_start_index,
spatial_shapes=spatial_shapes,
valid_ratios=valid_ratios,
tgt_mask=tgt_mask,
task=task,
extra=extra,
)
for i, output in enumerate(hs):
conf_score, outputs_class, outputs_mask,pred_federat = self.forward_prediction_heads(output.transpose(0, 1), mask_features, task, extra, mask_dict, self.training or (i == len(hs)-1))
predictions_score.append(conf_score)
predictions_class.append(outputs_class)
predictions_mask.append(outputs_mask)
predictions_federate.append(pred_federat)
# iteratively box prediction
if self.initial_pred:
out_boxes = self.pred_box(references, hs, refpoint_embed.sigmoid())
assert len(predictions_class) == self.num_layers + 1
else:
out_boxes = self.pred_box(references, hs)
if mask_dict is not None:
predictions_mask=torch.stack(predictions_mask)
predictions_class=torch.stack(predictions_class)
predictions_score = torch.stack(predictions_score)
predictions_class, predictions_score, out_boxes, predictions_mask=\
self.dn_post_process(predictions_class, predictions_score, out_boxes,mask_dict,predictions_mask)
predictions_class, predictions_score, predictions_mask=list(predictions_class), list(predictions_score), list(predictions_mask)
elif self.training: # this is to insure self.label_enc participate in the model
predictions_class[-1] += 0.0*self.label_enc[task].weight.sum()
if mask_dict is not None:
track_embed = hs[-1][:, mask_dict['pad_size']:, :]
else:
track_embed = hs[-1]
out = {
'pred_federat':predictions_federate[-1],
'pred_logits': predictions_class[-1],
'pred_scores': predictions_score[-1],
'pred_masks': predictions_mask[-1],
'pred_boxes':out_boxes[-1],
'pred_track_embed': track_embed,
'visual_P': visual_P,
'aux_outputs': self._set_aux_loss(
predictions_class if self.mask_classification else None, predictions_score, predictions_mask, out_boxes, predictions_federate, visual_P
)
}
if self.two_stage:
out['interm_outputs'] = interm_outputs
return out, mask_dict
def forward_prediction_heads(self, output, mask_features, task, extra,mask_dict, pred_mask=True, visual_P=False):
decoder_output = self.decoder_norm(output)
decoder_output = decoder_output.transpose(0, 1)
# outputs_class = self.class_embed(decoder_output)
conf_score = self.confidence_score(decoder_output) # if visual_P else None
class_embed = decoder_output @ self.category_embed # [bz,num_q,projectdim]
if task in ['grounding', 'rvos']:
outputs_class = torch.einsum("bqc,bc->bq", class_embed, extra['grounding_class']).unsqueeze(-1) #[bz,numq,1]
else:
outputs_class = torch.einsum("bqc,nc->bqn", class_embed, extra['class_embeddings']) #[bz,n,80]
outputs_mask = None
if pred_mask:
mask_embed = self.mask_embed(decoder_output)
outputs_mask = torch.einsum("bqc,bchw->bqhw", mask_embed, mask_features)
return conf_score, outputs_class, outputs_mask, None
@torch.jit.unused
def _set_aux_loss(self, outputs_class, outputs_score, outputs_seg_masks, out_boxes, predictions_federate=None, visual_P=False):
# this is a workaround to make torchscript happy, as torchscript
# doesn't support dictionary with non-homogeneous values, such
# as a dict having both a Tensor and a list.
# if self.mask_classification:
if predictions_federate is None:
return [
{"pred_logits": a, "pred_scores": b, "pred_masks": c, "pred_boxes":d, 'visual_P': visual_P}
for a, b, c, d in zip(outputs_class[:-1], outputs_score[:-1], outputs_seg_masks[:-1], out_boxes[:-1])
]
else:
return [
{"pred_logits": a, "pred_scores": b, "pred_masks": c, "pred_boxes":d, 'pred_federat':e,'visual_P': visual_P}
for a, b, c, d, e in zip(outputs_class[:-1], outputs_score[:-1], outputs_seg_masks[:-1], out_boxes[:-1], predictions_federate[:-1])
] |