Spaces:
Paused
Paused
File size: 62,058 Bytes
211f16c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 |
try:
import detectron2
except:
import os
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
os.system('cd GLEE/glee/models/pixel_decoder/ops && sh mask.sh')
# os.system('python -m pip install -e detectron2')
import gradio as gr
import numpy as np
import cv2
import torch
from os import path
from detectron2.config import get_cfg
from GLEE.glee.models.glee_model import GLEE_Model
from GLEE.glee.config_deeplab import add_deeplab_config
from GLEE.glee.config import add_glee_config
import torch.nn.functional as F
import torchvision
import math
from scipy.optimize import linear_sum_assignment
from obj365_name import categories as OBJ365_CATEGORIESV2
import copy
this_dir = path.dirname(path.abspath(__file__))
print(f"Is CUDA available: {torch.cuda.is_available()}")
# True
if torch.cuda.is_available():
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# Tesla T4
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(-1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=-1)
def scribble2box(img):
if img.max()==0:
return None, None
rows = np.any(img, axis=1)
cols = np.any(img, axis=0)
all = np.any(img,axis=2)
R,G,B,A = img[np.where(all)[0][0],np.where(all)[1][0]].tolist() # get color
ymin, ymax = np.where(rows)[0][[0, -1]]
xmin, xmax = np.where(cols)[0][[0, -1]]
return np.array([ xmin,ymin, xmax,ymax]), (R,G,B)
def LSJ_box_postprocess( out_bbox, padding_size, crop_size, img_h, img_w):
# postprocess box height and width
boxes = box_cxcywh_to_xyxy(out_bbox)
lsj_sclae = torch.tensor([padding_size[1], padding_size[0], padding_size[1], padding_size[0]]).to(out_bbox)
crop_scale = torch.tensor([crop_size[1], crop_size[0], crop_size[1], crop_size[0]]).to(out_bbox)
boxes = boxes * lsj_sclae
boxes = boxes / crop_scale
boxes = torch.clamp(boxes,0,1)
scale_fct = torch.tensor([img_w, img_h, img_w, img_h])
scale_fct = scale_fct.to(out_bbox)
boxes = boxes * scale_fct
return boxes
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933],
[0.494, 0.000, 0.556], [0.494, 0.000, 0.000], [0.000, 0.745, 0.000],
[0.700, 0.300, 0.600],[0.000, 0.447, 0.741], [0.850, 0.325, 0.098]]
coco_class_name = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']
YTBVISOVIS_class_name = ['lizard', 'cat', 'horse', 'eagle', 'frog', 'Horse', 'monkey', 'bear', 'parrot', 'giant_panda', 'truck', 'zebra', 'rabbit', 'skateboard', 'tiger', 'shark', 'Person', 'Poultry', 'Zebra', 'Airplane', 'elephant', 'Elephant', 'Turtle', 'snake', 'train', 'Dog', 'snowboard', 'airplane', 'Lizard', 'dog', 'Cat', 'earless_seal', 'boat', 'Tiger', 'motorbike', 'duck', 'fox', 'Monkey', 'Bird', 'Bear', 'tennis_racket', 'Rabbit', 'Giraffe', 'Motorcycle', 'fish', 'Boat', 'deer', 'ape', 'Bicycle', 'Parrot', 'Cow', 'turtle', 'mouse', 'owl', 'Fish', 'surfboard', 'Giant_panda', 'Sheep', 'hand', 'Vehical', 'sedan', 'leopard', 'person', 'giraffe', 'cow']
OBJ365_class_names = [cat['name'] for cat in OBJ365_CATEGORIESV2]
class_agnostic_name = ['object']
if torch.cuda.is_available():
print('use cuda')
device = 'cuda'
else:
print('use cpu')
device='cpu'
cfg_r50 = get_cfg()
add_deeplab_config(cfg_r50)
add_glee_config(cfg_r50)
conf_files_r50 = 'GLEE/configs/R50.yaml'
checkpoints_r50 = torch.load('GLEE_R50_Scaleup10m.pth')
cfg_r50.merge_from_file(conf_files_r50)
GLEEmodel_r50 = GLEE_Model(cfg_r50, None, device, None, True).to(device)
GLEEmodel_r50.load_state_dict(checkpoints_r50, strict=False)
GLEEmodel_r50.eval()
cfg_vos = get_cfg()
add_deeplab_config(cfg_vos)
add_glee_config(cfg_vos)
conf_files_vos = 'GLEE/configs/vos_v0.yaml'
cfg_vos.merge_from_file(conf_files_vos)
cfg_swin = get_cfg()
add_deeplab_config(cfg_swin)
add_glee_config(cfg_swin)
conf_files_swin = 'GLEE/configs/SwinL.yaml'
checkpoints_swin = torch.load('GLEE_SwinL_Scaleup10m.pth')
cfg_swin.merge_from_file(conf_files_swin)
GLEEmodel_swin = GLEE_Model(cfg_swin, None, device, None, True).to(device)
GLEEmodel_swin.load_state_dict(checkpoints_swin, strict=False)
GLEEmodel_swin.eval()
pixel_mean = torch.Tensor( [123.675, 116.28, 103.53]).to(device).view(3, 1, 1)
pixel_std = torch.Tensor([58.395, 57.12, 57.375]).to(device).view(3, 1, 1)
normalizer = lambda x: (x - pixel_mean) / pixel_std
inference_size = 800
video_inference_size = 720
inference_type = 'resize_shot' # or LSJ
size_divisibility = 32
FONT_SCALE = 1.5e-3
THICKNESS_SCALE = 1e-3
TEXT_Y_OFFSET_SCALE = 1e-2
if inference_type != 'LSJ':
resizer = torchvision.transforms.Resize(inference_size,antialias=True)
videoresizer = torchvision.transforms.Resize(video_inference_size,antialias=True)
def segment_image(img, prompt_mode, categoryname, custom_category, expressiong, results_select, num_inst_select, threshold_select, mask_image_mix_ration, model_selection):
if model_selection == 'GLEE-Plus (SwinL)':
GLEEmodel = GLEEmodel_swin
print('use GLEE-Plus')
else:
GLEEmodel = GLEEmodel_r50
print('use GLEE-Lite')
copyed_img = img['background'][:,:,:3].copy()
ori_image = torch.as_tensor(np.ascontiguousarray( copyed_img.transpose(2, 0, 1)))
ori_image = normalizer(ori_image.to(device))[None,]
_,_, ori_height, ori_width = ori_image.shape
if inference_type == 'LSJ':
infer_image = torch.zeros(1,3,1024,1024).to(ori_image)
infer_image[:,:,:inference_size,:inference_size] = ori_image
else:
resize_image = resizer(ori_image)
image_size = torch.as_tensor((resize_image.shape[-2],resize_image.shape[-1]))
re_size = resize_image.shape[-2:]
if size_divisibility > 1:
stride = size_divisibility
# the last two dims are H,W, both subject to divisibility requirement
padding_size = ((image_size + (stride - 1)).div(stride, rounding_mode="floor") * stride).tolist()
infer_image = torch.zeros(1,3,padding_size[0],padding_size[1]).to(resize_image)
infer_image[0,:,:image_size[0],:image_size[1]] = resize_image
# reversed_image = infer_image*pixel_std + pixel_mean
# reversed_image = torch.clip(reversed_image,min=0,max=255)
# reversed_image = reversed_image[0].permute(1,2,0)
# reversed_image = reversed_image.int().cpu().numpy().copy()
# cv2.imwrite('test.png',reversed_image[:,:,::-1])
if prompt_mode == 'categories' or prompt_mode == 'expression':
if len(results_select)==0:
results_select=['box']
if prompt_mode == 'categories':
if categoryname =="COCO-80":
batch_category_name = coco_class_name
elif categoryname =="OBJ365":
batch_category_name = OBJ365_class_names
elif categoryname =="Custom-List":
batch_category_name = custom_category.split(',')
else:
batch_category_name = class_agnostic_name
# mask_ori = torch.from_numpy(np.load('03_moto_mask.npy'))[None,]
# mask_ori = (F.interpolate(mask_ori, (height, width), mode='bilinear') > 0).to(device)
# prompt_list = [mask_ori[0]]
prompt_list = []
with torch.no_grad():
(outputs,_) = GLEEmodel(infer_image, prompt_list, task="coco", batch_name_list=batch_category_name, is_train=False)
topK_instance = max(num_inst_select,1)
else:
topK_instance = 1
prompt_list = {'grounding':[expressiong]}
with torch.no_grad():
(outputs,_) = GLEEmodel(infer_image, prompt_list, task="grounding", batch_name_list=[], is_train=False)
mask_pred = outputs['pred_masks'][0]
mask_cls = outputs['pred_logits'][0]
boxes_pred = outputs['pred_boxes'][0]
scores = mask_cls.sigmoid().max(-1)[0]
scores_per_image, topk_indices = scores.topk(topK_instance, sorted=True)
if prompt_mode == 'categories':
valid = scores_per_image>threshold_select
topk_indices = topk_indices[valid]
scores_per_image = scores_per_image[valid]
pred_class = mask_cls[topk_indices].max(-1)[1].tolist()
pred_boxes = boxes_pred[topk_indices]
boxes = LSJ_box_postprocess(pred_boxes,padding_size,re_size, ori_height,ori_width)
mask_pred = mask_pred[topk_indices]
pred_masks = F.interpolate( mask_pred[None,], size=(padding_size[0], padding_size[1]), mode="bilinear", align_corners=False )
pred_masks = pred_masks[:,:,:re_size[0],:re_size[1]]
pred_masks = F.interpolate( pred_masks, size=(ori_height,ori_width), mode="bilinear", align_corners=False )
pred_masks = (pred_masks>0).detach().cpu().numpy()[0]
if 'mask' in results_select:
zero_mask = np.zeros_like(copyed_img)
for nn, mask in enumerate(pred_masks):
# mask = mask.numpy()
mask = mask.reshape(mask.shape[0], mask.shape[1], 1)
lar = np.concatenate((mask*COLORS[nn%12][2], mask*COLORS[nn%12][1], mask*COLORS[nn%12][0]), axis = 2)
zero_mask = zero_mask+ lar
lar_valid = zero_mask>0
masked_image = lar_valid*copyed_img
img_n = masked_image*mask_image_mix_ration + np.clip(zero_mask,0,1)*255*(1-mask_image_mix_ration)
max_p = img_n.max()
img_n = 255*img_n/max_p
ret = (~lar_valid*copyed_img)*mask_image_mix_ration + img_n
ret = ret.astype('uint8')
else:
ret = copyed_img
if 'box' in results_select:
line_width = max(ret.shape) /200
for nn,(classid, box) in enumerate(zip(pred_class,boxes)):
x1,y1,x2,y2 = box.long().tolist()
RGB = (COLORS[nn%12][2]*255,COLORS[nn%12][1]*255,COLORS[nn%12][0]*255)
cv2.rectangle(ret, (x1,y1), (x2,y2), RGB, math.ceil(line_width) )
if prompt_mode == 'categories' or (prompt_mode == 'expression' and 'expression' in results_select ):
if prompt_mode == 'categories':
label = ''
if 'name' in results_select:
label += batch_category_name[classid]
if 'score' in results_select:
label += str(scores_per_image[nn].item())[:4]
else:
label = expressiong
if len(label)==0:
continue
height, width, _ = ret.shape
FONT = cv2.FONT_HERSHEY_COMPLEX
label_width, label_height = cv2.getTextSize(label, FONT, min(width, height) * FONT_SCALE, math.ceil(min(width, height) * THICKNESS_SCALE))[0]
cv2.rectangle(ret, (x1,y1), (x1+label_width,(y1 -label_height) - int(height * TEXT_Y_OFFSET_SCALE)), RGB, -1)
cv2.putText(
ret,
label,
(x1, y1 - int(height * TEXT_Y_OFFSET_SCALE)),
fontFace=FONT,
fontScale=min(width, height) * FONT_SCALE,
thickness=math.ceil(min(width, height) * THICKNESS_SCALE),
color=(255,255,255),
)
ret = ret.astype('uint8')
return ret
else: #visual prompt
topK_instance = 1
copyed_img = img['background'][:,:,:3].copy()
# get bbox from scribbles in layers
bbox_list = [scribble2box(layer) for layer in img['layers'] ]
visual_prompt_list = []
visual_prompt_RGB_list = []
for mask, (box,RGB) in zip(img['layers'], bbox_list):
if box is None:
continue
if prompt_mode=='box':
fakemask = np.zeros_like(copyed_img[:,:,0])
x1 ,y1 ,x2, y2 = box
fakemask[ y1:y2, x1:x2 ] = 1
fakemask = fakemask>0
elif prompt_mode=='point':
fakemask = np.zeros_like(copyed_img[:,:,0])
H,W = fakemask.shape
x1 ,y1 ,x2, y2 = box
center_x, center_y = (x1+x2)//2, (y1+y2)//2
fakemask[ center_y-H//40:center_y+H//40, center_x-W//40:center_x+W//40 ] = 1
fakemask = fakemask>0
elif prompt_mode=='scribble':
fakemask = mask[:,:,-1]
fakemask = fakemask>0
fakemask = torch.from_numpy(fakemask).unsqueeze(0).to(ori_image)
if inference_type == 'LSJ':
infer_visual_prompt = torch.zeros(1,1024,1024).to(ori_image)
infer_visual_prompt[:,:inference_size,:inference_size] = fakemask
else:
resize_fakemask = resizer(fakemask)
if size_divisibility > 1:
# the last two dims are H,W, both subject to divisibility requirement
infer_visual_prompt = torch.zeros(1,padding_size[0],padding_size[1]).to(resize_fakemask)
infer_visual_prompt[:,:image_size[0],:image_size[1]] = resize_fakemask
visual_prompt_list.append( infer_visual_prompt>0 )
visual_prompt_RGB_list.append(RGB)
mask_results_list = []
for visual_prompt in visual_prompt_list:
prompt_list = {'spatial':[visual_prompt]}
with torch.no_grad():
(outputs,_) = GLEEmodel(infer_image, prompt_list, task="coco", batch_name_list=['object'], is_train=False, visual_prompt_type=prompt_mode )
mask_pred = outputs['pred_masks'][0]
mask_cls = outputs['pred_logits'][0]
boxes_pred = outputs['pred_boxes'][0]
scores = mask_cls.sigmoid().max(-1)[0]
scores_per_image, topk_indices = scores.topk(topK_instance, sorted=True)
pred_class = mask_cls[topk_indices].max(-1)[1].tolist()
pred_boxes = boxes_pred[topk_indices]
boxes = LSJ_box_postprocess(pred_boxes,padding_size,re_size, ori_height,ori_width)
mask_pred = mask_pred[topk_indices]
pred_masks = F.interpolate( mask_pred[None,], size=(padding_size[0], padding_size[1]), mode="bilinear", align_corners=False )
pred_masks = pred_masks[:,:,:re_size[0],:re_size[1]]
pred_masks = F.interpolate( pred_masks, size=(ori_height,ori_width), mode="bilinear", align_corners=False )
pred_masks = (pred_masks>0).detach().cpu().numpy()[0]
mask_results_list.append(pred_masks)
zero_mask = np.zeros_like(copyed_img)
for mask,RGB in zip(mask_results_list,visual_prompt_RGB_list):
mask = mask.reshape(mask.shape[-2], mask.shape[-1], 1)
lar = np.concatenate((mask*RGB[0], mask*RGB[1],mask*RGB[2]), axis = 2)
zero_mask = zero_mask+ lar
lar_valid = zero_mask>0
masked_image = lar_valid*copyed_img
img_n = masked_image*mask_image_mix_ration + np.clip(zero_mask,0,255)*(1-mask_image_mix_ration)
max_p = img_n.max()
img_n = 255*img_n/max_p
ret = (~lar_valid*copyed_img)*mask_image_mix_ration + img_n
ret = ret.astype('uint8')
# cv2.imwrite('00020_inst.jpg', cv2.cvtColor(ret, cv2.COLOR_BGR2RGB))
return ret
def process_frames(frame_list):
clip_images = [torch.as_tensor(np.ascontiguousarray( frame[:,:,::-1].transpose(2, 0, 1))) for frame in frame_list]
processed_frames = []
for ori_image in clip_images:
ori_image = normalizer(ori_image.to(device))[None,]
_,_, ori_height, ori_width = ori_image.shape
if inference_type == 'LSJ':
infer_image = torch.zeros(1,3,1024,1024).to(ori_image)
infer_image[:,:,:inference_size,:inference_size] = ori_image
else:
resize_image = videoresizer(ori_image)
image_size = torch.as_tensor((resize_image.shape[-2],resize_image.shape[-1]))
re_size = resize_image.shape[-2:]
if size_divisibility > 1:
stride = size_divisibility
# the last two dims are H,W, both subject to divisibility requirement
padding_size = ((image_size + (stride - 1)).div(stride, rounding_mode="floor") * stride).tolist()
infer_image = torch.zeros(1,3,padding_size[0],padding_size[1]).to(resize_image)
infer_image[0,:,:image_size[0],:image_size[1]] = resize_image
processed_frames.append(infer_image)
return torch.cat(processed_frames,dim=0), padding_size,re_size,ori_height, ori_width # [clip_lenth,3,h,w]
def match_from_embds(tgt_embds, cur_embds):
cur_embds = cur_embds / cur_embds.norm(dim=1)[:, None]
tgt_embds = tgt_embds / tgt_embds.norm(dim=1)[:, None]
cos_sim = torch.mm(cur_embds, tgt_embds.transpose(0,1))
cost_embd = 1 - cos_sim
C = 1.0 * cost_embd
C = C.cpu()
indices = linear_sum_assignment(C.transpose(0, 1)) # target x current
indices = indices[1] # permutation that makes current aligns to target
return indices
def segment_video(video, prompt_mode, categoryname, custom_category, expressiong, results_select, num_inst_select, threshold_select, mask_image_mix_ration, model_selection,video_frames_select, prompter):
### model selection
if model_selection == 'GLEE-Plus (SwinL)':
GLEEmodel = GLEEmodel_swin
print('use GLEE-Plus')
clip_length = 4 #batchsize
else:
GLEEmodel = GLEEmodel_r50
print('use GLEE-Lite')
clip_length = 8 #batchsize
# read video and get sparse frames
cap = cv2.VideoCapture(video)
video_fps = cap.get(cv2.CAP_PROP_FPS )
print('video fps:', video_fps)
frame_list = []
frac = video_fps/30
frame_count = 0
read_fps = 10
interval = int( frac *(30 /read_fps) ) #interval frames
while cap.isOpened():
ret, frame = cap.read()
frame_count += 1
# if frame is read correctly ret is True
if not ret:
print("Can't receive frame (stream end?). Exiting ...")
break
if frame_count % int(interval) == 0:
frame_list.append(frame)
cap.release()
first_frame = frame_list[0]
frame_list = frame_list[:video_frames_select] # max num of frames
print('num frames:', len(frame_list))
video_len = len(frame_list)
if prompt_mode == 'categories' or prompt_mode == 'expression':
if len(results_select)==0:
results_select=['box']
if prompt_mode == 'categories':
if categoryname =="COCO-80":
batch_category_name = coco_class_name
elif categoryname =="YTBVIS&OVIS":
batch_category_name = YTBVISOVIS_class_name
elif categoryname =="OBJ365":
batch_category_name = OBJ365_class_names
elif categoryname =="Custom-List":
batch_category_name = custom_category.split(',')
else:
batch_category_name = class_agnostic_name
task = 'coco'
prompt_list = []
topK_instance = num_inst_select
prompt_mode = 'categories'
results_select = ['mask', 'score', 'box', 'name']
else:
topK_instance = 1
initprompt_list = {'grounding':[expressiong]}
task = 'grounding'
batch_category_name = []
#split long video into clips to form a batch input
num_clips = math.ceil(video_len/clip_length)
logits_list, boxes_list, embed_list, masks_list = [], [], [], []
for c in range(num_clips):
start_idx = c*clip_length
end_idx = (c+1)*clip_length
clip_inputs = frame_list[start_idx:end_idx]
clip_images, padding_size,re_size,ori_height, ori_width = process_frames(clip_inputs)
if task=='grounding':
prompt_list = {'grounding': initprompt_list['grounding']*len(clip_images)}
with torch.no_grad():
(clip_output,_) = GLEEmodel(clip_images, prompt_list, task=task, batch_name_list=batch_category_name, is_train=False)
logits_list.append(clip_output['pred_logits'].detach())
boxes_list.append(clip_output['pred_boxes'].detach())
embed_list.append(clip_output['pred_track_embed'].detach())
masks_list.append(clip_output['pred_masks'].detach()) #.to(self.merge_device)
del clip_output
torch.cuda.empty_cache()
outputs = {
'pred_logits':torch.cat(logits_list,dim=0),
'pred_track_embed':torch.cat(embed_list,dim=0),
'pred_masks':torch.cat(masks_list,dim=0),
'pred_boxes': torch.cat(boxes_list,dim=0),
}
pred_logits = list(torch.unbind(outputs['pred_logits']))
pred_masks = list(torch.unbind(outputs['pred_masks']))
pred_embds = list(torch.unbind(outputs['pred_track_embed']))
pred_boxes = list(torch.unbind(outputs['pred_boxes']))
del outputs
out_logits = []
out_masks = []
out_embds = []
out_boxes = []
out_logits.append(pred_logits[0])
out_masks.append(pred_masks[0])
out_embds.append(pred_embds[0])
out_boxes.append(pred_boxes[0])
memory_embedding = out_embds[-1]
for i in range(1, len(pred_logits)):
# indices = self.match_from_embds(memory_embedding, pred_embds[i])
MA_embedding = torch.stack(out_embds[-5:]).mean(0)
indices = match_from_embds(MA_embedding, pred_embds[i])
out_logits.append(pred_logits[i][indices, :])
out_masks.append(pred_masks[i][indices, :, :])
out_embds.append(pred_embds[i][indices, :])
out_boxes.append(pred_boxes[i][indices, :])
score_weights = pred_logits[i][indices, :].sigmoid().max(-1)[0][:,None]
memory_embedding = (memory_embedding+pred_embds[i][indices, :]*score_weights )/(1+score_weights)
mask_cls = sum(out_logits)/len(out_logits)
scores = mask_cls.sigmoid().max(-1)[0]
scores_per_image, topk_indices = scores.topk(topK_instance, sorted=True)
valid = scores_per_image>threshold_select
topk_indices = topk_indices[valid]
scores_per_image = scores_per_image[valid]
out_logits = torch.stack(out_logits, dim=1)[topk_indices] # q numc -> q t numc
mask_pred = torch.stack(out_masks, dim=1)[topk_indices] # q h w -> numinst t h w
pred_boxes = torch.stack(out_boxes, dim=1)[topk_indices] # q 4 -> numinst t 4
perframe_score = out_logits.sigmoid().max(-1)[0].cpu().numpy()
pred_class = mask_cls[topk_indices].max(-1)[1].tolist()
boxes = LSJ_box_postprocess(pred_boxes,padding_size,re_size, ori_height,ori_width)
pred_masks = F.interpolate( mask_pred, size=(padding_size[0], padding_size[1]), mode="bilinear", align_corners=False )
pred_masks = pred_masks[:,:,:re_size[0],:re_size[1]]
pred_masks = F.interpolate( pred_masks, size=(ori_height,ori_width), mode="bilinear", align_corners=False )
pred_masks = (pred_masks>0).detach().cpu().numpy() # [numinst,t,h,w]
ourput_frames = []
for frameidx, ori_frame in enumerate(frame_list):
copyed_img = ori_frame.copy()
if 'mask' in results_select:
zero_mask = np.zeros_like(copyed_img)
for nn, (mask,score) in enumerate(zip(pred_masks[:,frameidx],perframe_score[:,frameidx])):
# mask = mask.numpy()
if score<threshold_select:
continue
mask = mask.reshape(mask.shape[0], mask.shape[1], 1)
lar = np.concatenate((mask*COLORS[nn%12][0], mask*COLORS[nn%12][1], mask*COLORS[nn%12][2]), axis = 2)
zero_mask = zero_mask+ lar
lar_valid = zero_mask>0
masked_image = lar_valid*copyed_img
img_n = masked_image*mask_image_mix_ration + np.clip(zero_mask,0,1)*255*(1-mask_image_mix_ration)
max_p = img_n.max()
img_n = 255*img_n/max_p
ret = (~lar_valid*copyed_img)*mask_image_mix_ration + img_n
ret = ret.astype('uint8')
else:
ret = copyed_img
if 'box' in results_select:
line_width = max(ret.shape) /200
for nn,(classid, box, score) in enumerate(zip(pred_class,boxes[:,frameidx],perframe_score[:,frameidx])):
if score<threshold_select:
continue
x1,y1,x2,y2 = box.long().tolist()
RGB = (COLORS[nn%12][0]*255,COLORS[nn%12][1]*255,COLORS[nn%12][2]*255)
cv2.rectangle(ret, (x1,y1), (x2,y2), RGB, math.ceil(line_width) )
if prompt_mode == 'categories' or (prompt_mode == 'expression' and 'expression' in results_select ):
if prompt_mode == 'categories':
label = ''
if 'name' in results_select:
label += batch_category_name[classid]
if 'score' in results_select:
label += str(score.item())[:4]
else:
label = expressiong
if 'score' in results_select:
label += str(score.item())[:4]
if len(label)==0:
continue
height, width, _ = ret.shape
FONT = cv2.FONT_HERSHEY_COMPLEX
label_width, label_height = cv2.getTextSize(label, FONT, min(width, height) * FONT_SCALE, math.ceil(min(width, height) * THICKNESS_SCALE))[0]
cv2.rectangle(ret, (x1,y1), (x1+label_width,(y1 -label_height) - int(height * TEXT_Y_OFFSET_SCALE)), RGB, -1)
cv2.putText(
ret,
label,
(x1, y1 - int(height * TEXT_Y_OFFSET_SCALE)),
fontFace=FONT,
fontScale=min(width, height) * FONT_SCALE,
thickness=math.ceil(min(width, height) * THICKNESS_SCALE),
color=(255,255,255),
)
ourput_frames.append(ret)
# ret = ret.astype('uint8')
size = (ori_width,ori_height)
print('writing video...')
output_file = "test.mp4"
out = cv2.VideoWriter(output_file,cv2.VideoWriter_fourcc(*'avc1'), read_fps, size)
for i in range(len(ourput_frames)):
out.write(ourput_frames[i])
out.release()
del out_logits, out_masks, out_embds, out_boxes, pred_masks
torch.cuda.empty_cache()
return output_file
else: # visual prompt vos
# image prompt segmentation
topK_instance = 1
copyed_img = prompter['background'][:,:,:3].copy()
ori_image = torch.as_tensor(np.ascontiguousarray( copyed_img.transpose(2, 0, 1)))
ori_image = normalizer(ori_image.to(device))[None,]
_,_, ori_height, ori_width = ori_image.shape
resize_image = videoresizer(ori_image)
image_size = torch.as_tensor((resize_image.shape[-2],resize_image.shape[-1]))
re_size = resize_image.shape[-2:]
if size_divisibility > 1:
stride = size_divisibility
# the last two dims are H,W, both subject to divisibility requirement
padding_size = ((image_size + (stride - 1)).div(stride, rounding_mode="floor") * stride).tolist()
infer_image = torch.zeros(1,3,padding_size[0],padding_size[1]).to(resize_image)
infer_image[0,:,:image_size[0],:image_size[1]] = resize_image
prompter['layers'] = prompter['layers'][:1] #only keep 1 prompt for VOS as model can only segment one object once infer
bbox_list = [scribble2box(layer) for layer in prompter['layers'] ]
visual_prompt_list = []
visual_prompt_RGB_list = []
for mask, (box,RGB) in zip(prompter['layers'], bbox_list):
if box is None:
continue
if prompt_mode=='box':
fakemask = np.zeros_like(copyed_img[:,:,0])
x1 ,y1 ,x2, y2 = box
fakemask[ y1:y2, x1:x2 ] = 1
fakemask = fakemask>0
elif prompt_mode=='point':
fakemask = np.zeros_like(copyed_img[:,:,0])
H,W = fakemask.shape
x1 ,y1 ,x2, y2 = box
center_x, center_y = (x1+x2)//2, (y1+y2)//2
fakemask[ center_y-H//40:center_y+H//40, center_x-W//40:center_x+W//40 ] = 1
fakemask = fakemask>0
elif prompt_mode=='scribble':
fakemask = mask[:,:,-1]
fakemask = fakemask>0
fakemask = torch.from_numpy(fakemask).unsqueeze(0).to(ori_image)
if inference_type == 'LSJ':
infer_visual_prompt = torch.zeros(1,1024,1024).to(ori_image)
infer_visual_prompt[:,:inference_size,:inference_size] = fakemask
else:
resize_fakemask = videoresizer(fakemask)
if size_divisibility > 1:
# the last two dims are H,W, both subject to divisibility requirement
infer_visual_prompt = torch.zeros(1,padding_size[0],padding_size[1]).to(resize_fakemask)
infer_visual_prompt[:,:image_size[0],:image_size[1]] = resize_fakemask
visual_prompt_list.append( infer_visual_prompt>0 )
visual_prompt_RGB_list.append(RGB)
mask_results_list = []
for visual_prompt in visual_prompt_list:
prompt_list = {'spatial':[visual_prompt]}
with torch.no_grad():
(outputs,_) = GLEEmodel(infer_image, prompt_list, task="coco", batch_name_list=['object'], is_train=False, visual_prompt_type=prompt_mode )
mask_pred = outputs['pred_masks'][0]
mask_cls = outputs['pred_logits'][0]
boxes_pred = outputs['pred_boxes'][0]
scores = mask_cls.sigmoid().max(-1)[0]
scores_per_image, topk_indices = scores.topk(topK_instance, sorted=True)
pred_class = mask_cls[topk_indices].max(-1)[1].tolist()
pred_boxes = boxes_pred[topk_indices]
boxes = LSJ_box_postprocess(pred_boxes,padding_size,re_size, ori_height,ori_width)
mask_pred = mask_pred[topk_indices]
pred_masks = F.interpolate( mask_pred[None,], size=(padding_size[0], padding_size[1]), mode="bilinear", align_corners=False )
first_frame_mask_padding = copy.deepcopy(pred_masks.detach())
pred_masks = pred_masks[:,:,:re_size[0],:re_size[1]]
pred_masks = F.interpolate( pred_masks, size=(ori_height,ori_width), mode="bilinear", align_corners=False )
pred_masks = (pred_masks>0).detach().cpu().numpy()[0]
mask_results_list.append(pred_masks)
zero_mask = np.zeros_like(copyed_img)
for mask,RGB in zip(mask_results_list,visual_prompt_RGB_list):
mask = mask.reshape(mask.shape[-2], mask.shape[-1], 1)
lar = np.concatenate((mask*RGB[0], mask*RGB[1],mask*RGB[2]), axis = 2)
zero_mask = zero_mask+ lar
lar_valid = zero_mask>0
masked_image = lar_valid*copyed_img
img_n = masked_image*mask_image_mix_ration + np.clip(zero_mask,0,255)*(1-mask_image_mix_ration)
max_p = img_n.max()
img_n = 255*img_n/max_p
ret = (~lar_valid*copyed_img)*mask_image_mix_ration + img_n
ret = ret.astype('uint8')
# import pdb;pdb.set_trace()
# cv2.imwrite('00020_inst.jpg', cv2.cvtColor(ret, cv2.COLOR_BGR2RGB))
output_vos_results = []
output_vos_results.append(ret[:,:,::-1])
#### vos process
checkpoints_VOS = torch.load('GLEE_vos_r50.pth')
GLEEmodel_VOS = GLEE_Model(cfg_vos, None, device, None, True).to(device)
GLEEmodel_VOS.load_state_dict(checkpoints_VOS, strict=False)
GLEEmodel_VOS.eval()
exist_obj_dict = {}
language_dict_features_dict_init = {}
language_dict_features_dict_prev = {}
point_sample_extra = {}
for frame_idx in range(video_len):
score_dict = {}
if frame_idx==0:
exist_obj_dict.update({1:first_frame_mask_padding[0]>0 })
prompt_list["spatial"] = [first_frame_mask_padding[0]>0]
frame_image, padding_size,re_size,ori_height, ori_width = process_frames(frame_list[frame_idx:frame_idx+1])
with torch.no_grad():
language_dict_features_dict_init[1], point_sample_extra[1] = \
GLEEmodel_VOS.vos_step1(frame_image, prompt_list, 'ytbvos', batch_name_list=['object'], is_train= False)
language_dict_features_dict_prev[1] = copy.deepcopy(language_dict_features_dict_init[1])
score_dict[1] = 1.0
if frame_idx>0:
cur_obj_id=1
frame_image, padding_size,re_size,ori_height, ori_width = process_frames(frame_list[frame_idx:frame_idx+1])
prompt_list["spatial"] = [exist_obj_dict[cur_obj_id]]
# import pdb;pdb.set_trace()
language_dict_features_init = copy.deepcopy(language_dict_features_dict_init[cur_obj_id]) # Important
language_dict_features_prev = copy.deepcopy(language_dict_features_dict_prev[cur_obj_id]) # Important
language_dict_features_cur = {}
language_dict_features_cur["hidden"] = torch.cat([language_dict_features_init["hidden"], language_dict_features_prev["hidden"]], dim=1)
language_dict_features_cur["masks"] = torch.cat([language_dict_features_init["masks"], language_dict_features_prev["masks"]], dim=1)
# concat initial prompt and last frame prompt for early fusion,but only use last frame point sampled feature for decocer self attention
with torch.no_grad():
frame_output,_ = GLEEmodel_VOS.vos_step2(frame_image, task='ytbvos', language_dict_features = language_dict_features_cur, \
last_extra = point_sample_extra[cur_obj_id], batch_name_list=['object'], is_train= False)
logits = frame_output['pred_scores'][0]
top_k_propose = 1
topk_values, topk_indexes = torch.topk(logits.sigmoid(), top_k_propose, dim=0)
mask_pred_result = frame_output['pred_masks'][0,topk_indexes] #[nk,1,H,W]
# pred_embeddings = frame_output['pred_track_embed'][0,topk_indexes.squeeze()] #[nk,256]
score_dict[cur_obj_id] = topk_values.item()
if score_dict[cur_obj_id] > 0.3:
mask_pred_result = F.interpolate(
mask_pred_result,
size=(padding_size[0], padding_size[1]),
mode="bilinear",
align_corners=False,
)
exist_obj_dict[cur_obj_id] = mask_pred_result[0,0]>0
mask_pred_result = mask_pred_result[:,:,:re_size[0],:re_size[1]]
mask_pred_result = F.interpolate( mask_pred_result, size=(ori_height,ori_width), mode="bilinear", align_corners=True )[0]
final_mask = mask_pred_result[0]>0
final_mask = final_mask.cpu().numpy()
copyed_img = frame_list[frame_idx]
zero_mask = np.zeros_like(copyed_img)
RGB = visual_prompt_RGB_list[0]
mask = final_mask.reshape(final_mask.shape[0], final_mask.shape[1], 1)
lar = np.concatenate((mask*RGB[2], mask*RGB[1],mask*RGB[0]), axis = 2)
zero_mask = zero_mask+ lar
lar_valid = zero_mask>0
masked_image = lar_valid*copyed_img
img_n = masked_image*mask_image_mix_ration + np.clip(zero_mask,0,255)*(1-mask_image_mix_ration)
max_p = img_n.max()
img_n = 255*img_n/max_p
ret = (~lar_valid*copyed_img)*mask_image_mix_ration + img_n
ret = ret.astype('uint8')
output_vos_results.append(ret)
if score_dict[cur_obj_id]>0.5: # update memory
prompt_list["spatial"] = [exist_obj_dict[cur_obj_id].unsqueeze(0)]
assert cur_obj_id in language_dict_features_dict_prev
with torch.no_grad():
language_dict_features_dict_prev[cur_obj_id], point_sample_extra[cur_obj_id] = \
GLEEmodel_VOS.vos_step1(frame_image, prompt_list, 'ytbvos', batch_name_list=['object'], is_train= False)
else: # add zero as mask
copyed_img = frame_list[frame_idx]
ret = copyed_img*mask_image_mix_ration
ret = ret.astype('uint8')
output_vos_results.append(ret)
size = (ori_width,ori_height)
output_file = "test.mp4"
out = cv2.VideoWriter(output_file,cv2.VideoWriter_fourcc(*'avc1'), read_fps, size)
for i in range(len(output_vos_results)):
out.write(output_vos_results[i])
out.release()
torch.cuda.empty_cache()
return output_file
def visual_prompt_preview(img, prompt_mode):
copyed_img = img['background'][:,:,:3].copy()
import pdb;pdb.set_trace()
# get bbox from scribbles in layers
bbox_list = [scribble2box(layer) for layer in img['layers'] ]
zero_mask = np.zeros_like(copyed_img)
for mask, (box,RGB) in zip(img['layers'], bbox_list):
if box is None:
continue
if prompt_mode=='box':
fakemask = np.zeros_like(copyed_img[:,:,0])
x1 ,y1 ,x2, y2 = box
fakemask[ y1:y2, x1:x2 ] = 1
fakemask = fakemask>0
elif prompt_mode=='point':
fakemask = np.zeros_like(copyed_img[:,:,0])
H,W = fakemask.shape
x1 ,y1 ,x2, y2 = box
center_x, center_y = (x1+x2)//2, (y1+y2)//2
fakemask[ center_y-H//40:center_y+H//40, center_x-W//40:center_x+W//40 ] = 1
fakemask = fakemask>0
else:
fakemask = mask[:,:,-1]
fakemask = fakemask>0
mask = fakemask.reshape(fakemask.shape[0], fakemask.shape[1], 1)
lar = np.concatenate((mask*RGB[0], mask*RGB[1],mask*RGB[2]), axis = 2)
zero_mask = zero_mask+ lar
img_n = copyed_img + np.clip(zero_mask,0,255)
max_p = img_n.max()
ret = 255*img_n/max_p
ret = ret.astype('uint8')
return ret
with gr.Blocks(theme=gr.themes.Default()) as demo:
gr.Markdown('# GLEE: General Object Foundation Model for Images and Videos at Scale')
# gr.HTML("<p> <img src='/file=GLEE_logo.png' aligh='center' style='float:left' width='6%' > <h1 class='title is-1 publication-title'> <p style='margin-left: 20px'> GLEE: General Object Foundation Model for Images and Videos at Scale </h1> ")
gr.Markdown(' [Paper](https://arxiv.org/abs/2312.09158) —— [Project Page](https://glee-vision.github.io) —— [Code](https://github.com/FoundationVision/GLEE) ')
# gr.HTML(“img src=“image link” alt=“A beautiful landscape”)
gr.Markdown(
'The functionality demonstration demo app of GLEE. \
Image tasks includes **arbitrary vocabulary** object detection&segmentation, \
**any form of object name**, object caption detection, \
referring expression comprehension, and interactive segmentation. \
Video tasks add object tracking based on image tasks.'
)
with gr.Tab("Image task"):
with gr.Row():
with gr.Column():
img_input = gr.ImageEditor()
model_select = gr.Dropdown(
["GLEE-Lite (R50)", "GLEE-Plus (SwinL)"], value = "GLEE-Plus (SwinL)" , multiselect=False, label="Model",
)
with gr.Row():
with gr.Column():
prompt_mode_select = gr.Radio([ "categories", "expression", "point", "scribble", "box"], label="Prompt", value= "categories" , info="What kind of prompt do you want to use?")
category_select = gr.Dropdown(
["COCO-80", "OBJ365", "Custom-List", "Class-Agnostic"], visible=True, value = "COCO-80" , multiselect=False, label="Categories", info="Choose an existing category list or class-agnostic"
)
custom_category = gr.Textbox(
label="Custom Category",
info="Input custom category list, seperate by ',' ",
lines=1,
visible=False,
value="dog, cat, car, person",
)
input_expressiong = gr.Textbox(
label="Expression",
info="Input any description of an object in the image ",
lines=2,
visible=False,
value="the red car",
)
with gr.Accordion("Text based detection usage",open=False, visible=False) as textusage:
gr.Markdown(
'GLEE supports three kind of object perception methods: category list, textual description, and class-agnostic.<br />\
1.Select an existing category list from the "Categories" dropdown, like COCO or OBJ365, or customize your own list.<br />\
2.Enter arbitrary object name in "Custom Category", or choose the expression model and describe the object in "Expression Textbox" for single object detection only.<br />\
3.For class-agnostic mode, choose "Class-Agnostic" from the "Categories" dropdown.'
)
with gr.Group(visible=False,) as promptshow:
with gr.Accordion("Interactive segmentation usage",open=False):
gr.Markdown(
'For interactive segmentation:<br />\
1.Draw points, boxes, or scribbles on the canvas for multiclass segmentation; use separate layers for different objects, adding layers with a "+" sign.<br />\
2.Point mode accepts a single point only; multiple points default to the centroid, so use boxes or scribbles for larger objects.<br />\
3.After drawing, click green "√" to preview the prompt visualization; the segmentation mask follows the chosen prompt colors.'
)
img_showbox = gr.Image(label="visual prompt area preview")
def update_component_visible(prompt,category):
if prompt in ['point', 'scribble', 'box']:
return {
category_select:gr.Dropdown(visible=False),
custom_category:gr.Textbox(visible=False),
input_expressiong: gr.Textbox(visible=False),
promptshow:gr.Group(visible=True),
textusage:gr.Accordion(visible=False),
}
elif prompt == 'categories':
if category == "Custom-List":
return {
category_select:gr.Dropdown(visible=True),
custom_category:gr.Textbox(visible=True),
input_expressiong: gr.Textbox(visible=False),
promptshow:gr.Group(visible=False),
textusage:gr.Accordion(visible=True),
}
return {
category_select:gr.Dropdown(visible=True),
custom_category:gr.Textbox(visible=False),
input_expressiong: gr.Textbox(visible=False),
promptshow:gr.Group(visible=False),
textusage:gr.Accordion(visible=True),
}
else:
return {
category_select:gr.Dropdown(visible=False),
custom_category:gr.Textbox(visible=False),
input_expressiong: gr.Textbox(visible=True),
promptshow:gr.Group(visible=False),
textusage:gr.Accordion(visible=True),
}
def update_category_showcase(category):
if category == "Custom-List":
return {
category_select:gr.Dropdown(visible=True),
custom_category:gr.Textbox(visible=True),
input_expressiong: gr.Textbox(visible=False),
promptshow:gr.Group(visible=False),
textusage:gr.Accordion(visible=True),
}
else:
return {
category_select:gr.Dropdown(visible=True),
custom_category:gr.Textbox(visible=False),
input_expressiong: gr.Textbox(visible=False),
promptshow:gr.Group(visible=False),
textusage:gr.Accordion(visible=True),
}
prompt_mode_select.input(update_component_visible,
[prompt_mode_select,category_select],
[category_select,custom_category,input_expressiong,promptshow,textusage])
category_select.input(update_category_showcase,
[category_select],
[category_select,custom_category,input_expressiong,promptshow,textusage])
# with gr.Column():
with gr.Column():
image_segment = gr.Image(label="detection and segmentation results")
with gr.Accordion("Try More Visualization Options"):
results_select = gr.CheckboxGroup(["box", "mask", "name", "score", "expression"], value=["box", "mask", "name", "score"], label="Shown Results", info="The results shown on image")
num_inst_select = gr.Slider(1, 50, value=15, step=1, label="Num of topK instances for category based detection", info="Choose between 1 and 50 for better visualization")
threshold_select = gr.Slider(0, 1, value=0.2, label="Confidence Threshold", info="Choose threshold ")
mask_image_mix_ration = gr.Slider(0, 1, value=0.65, label="Image Brightness Ratio", info="Brightness between image and colored masks ")
image_button = gr.Button("Detect & Segment")
img_input.change(visual_prompt_preview, inputs = [img_input,prompt_mode_select] , outputs = img_showbox)
image_button.click(segment_image, inputs=[img_input, prompt_mode_select, category_select, custom_category,input_expressiong, results_select, num_inst_select, threshold_select, mask_image_mix_ration,model_select], outputs=image_segment)
with gr.Tab("Video task"):
gr.Markdown(
'#### Gradio only support .mp4 for HTML display. \
Due to computing resource restrictions, we sample and play the input video in 10 fps, and single video is limited (or cropped) to 10 seconds'
)
with gr.Row():
with gr.Column(): # video input face
video_input = gr.Video(label="Input Video", interactive=True, sources=['upload'])
video_model_select = gr.Dropdown(
["GLEE-Lite (R50)", "GLEE-Plus (SwinL)"], value = "GLEE-Lite (R50)" , multiselect=False, label="Model",
)
with gr.Row():
with gr.Column():
video_prompt_mode_select = gr.Radio([ "categories", "expression", "point", "scribble", "box"], label="Prompt", value= "categories" , info="What kind of prompt do you want to use?")
video_category_select = gr.Dropdown(
["YTBVIS&OVIS", "COCO-80", "OBJ365", "Custom-List", "Class-Agnostic"], visible=True, value = "COCO-80" , multiselect=False, label="Categories", info="Choose an existing category list or class-agnostic"
)
video_custom_category = gr.Textbox(
label="Custom Category",
info="Input custom category list, seperate by ',' ",
lines=1,
visible=False,
value="dog, cat, car, person",
)
video_input_expressiong = gr.Textbox(
label="Expression",
info="Input any description of an object in the image ",
lines=2,
visible=False,
value="the red car",
)
with gr.Accordion("Text based detection usage",open=False, visible=False) as video_textusage:
gr.Markdown(
'GLEE supports three kind of object perception methods: category list, textual description, and class-agnostic.<br />\
1.Select an existing category list from the "Categories" dropdown, like COCO or OBJ365, or customize your own list.<br />\
2.Enter arbitrary object name in "Custom Category", or choose the expression model and describe the object in "Expression Textbox" for single object detection only.<br />\
3.For class-agnostic mode, choose "Class-Agnostic" from the "Categories" dropdown.'
)
with gr.Group(visible=False,) as video_promptshow:
with gr.Accordion("Interactive segmentation usage",open=False):
gr.Markdown(
'For video interactive segmentation, draw a prompt on the first frame:<br />\
1.Draw points, boxes, or scribbles on the canvas for multiclass segmentation; only support one object tracking in interactive mode\
2.Point mode accepts a single point only; multiple points default to the centroid, so use boxes or scribbles for larger objects.<br />\
3.After drawing, click "Preview" to preview the prompt visualization; the segmentation mask follows the chosen prompt colors.'
)
with gr.Row():
video_visual_prompter = gr.ImageEditor(label="visual prompter", show_label=True ,sources=['clipboard'])
video_img_showbox = gr.Image(label="visual prompt area preview")
video_prompt_preview = gr.Button("Preview")
def update_video_component_visible(prompt,category, video):
if prompt in ['point', 'scribble', 'box']:
if video is None:
return {
video_category_select:gr.Dropdown(visible=False),
video_custom_category:gr.Textbox(visible=False),
video_input_expressiong: gr.Textbox(visible=False),
video_promptshow:gr.Group(visible=True),
video_textusage:gr.Accordion(visible=False),}
else:
cap = cv2.VideoCapture(video)
ret, frame = cap.read()
frame = frame[:,:,::-1].astype('uint8')
zerolayers = np.zeros((frame.shape[0],frame.shape[1],1)).astype('uint8')
alpha = 255+zerolayers
newframe = np.concatenate((frame,alpha),axis=2)
cap.release()
return {
video_category_select:gr.Dropdown(visible=False),
video_custom_category:gr.Textbox(visible=False),
video_input_expressiong: gr.Textbox(visible=False),
video_promptshow:gr.Group(visible=True),
video_textusage:gr.Accordion(visible=False),
video_visual_prompter:gr.ImageEditor(value= {
'background':newframe,
'layers':[ ],
'composite':newframe }),
}
elif prompt == 'categories':
if category == "Custom-List":
return {
video_category_select:gr.Dropdown(visible=True),
video_custom_category:gr.Textbox(visible=True),
video_input_expressiong: gr.Textbox(visible=False),
video_promptshow:gr.Group(visible=False),
video_textusage:gr.Accordion(visible=True),
}
return {
video_category_select:gr.Dropdown(visible=True),
video_custom_category:gr.Textbox(visible=False),
video_input_expressiong: gr.Textbox(visible=False),
video_promptshow:gr.Group(visible=False),
video_textusage:gr.Accordion(visible=True),
}
else:
return {
video_category_select:gr.Dropdown(visible=False),
video_custom_category:gr.Textbox(visible=False),
video_input_expressiong: gr.Textbox(visible=True),
video_promptshow:gr.Group(visible=False),
video_textusage:gr.Accordion(visible=True),
}
def update_video_category_showcase(category):
if category == "Custom-List":
return {
video_category_select:gr.Dropdown(visible=True),
video_custom_category:gr.Textbox(visible=True),
video_input_expressiong: gr.Textbox(visible=False),
video_promptshow:gr.Group(visible=False),
video_textusage:gr.Accordion(visible=True),
}
else:
return {
video_category_select:gr.Dropdown(visible=True),
video_custom_category:gr.Textbox(visible=False),
video_input_expressiong: gr.Textbox(visible=False),
video_promptshow:gr.Group(visible=False),
video_textusage:gr.Accordion(visible=True),
}
video_prompt_mode_select.input(update_video_component_visible,
[video_prompt_mode_select,video_category_select,video_input],
[video_category_select,video_custom_category,video_input_expressiong,video_promptshow,video_textusage,video_visual_prompter])
video_category_select.input(update_video_category_showcase,
[video_category_select],
[video_category_select,video_custom_category,video_input_expressiong,video_promptshow,video_textusage])
video_input.change(update_video_component_visible,
[video_prompt_mode_select,video_category_select,video_input],
[video_category_select,video_custom_category,video_input_expressiong,video_promptshow,video_textusage,video_visual_prompter])
with gr.Column():
video_output = gr.Video(label="Video Results")
with gr.Accordion("Try More Visualization Options"):
video_frames_select = gr.Slider(1, 200, value=32, step=1, label="Max frames", info="The max length for video frames, you can select fewer frames reduce the waiting time to check the effect quickly")
video_results_select = gr.CheckboxGroup(["box", "mask", "name", "score", "expression"], value=["box", "mask", "name", "score", "expression"], label="Shown Results", info="The results shown on image")
video_num_inst_select = gr.Slider(1, 30, value=10, step=1, label="Num of topK instances for category based detection", info="Choose between 1 and 50 for better visualization")
video_threshold_select = gr.Slider(0, 1, value=0.2, label="Confidence Threshold", info="Choose threshold ")
video_mask_image_mix_ration = gr.Slider(0, 1, value=0.65, label="Image Brightness Ratio", info="Brightness between image and colored masks ")
video_prompt_preview.click(visual_prompt_preview, inputs = [video_visual_prompter,video_prompt_mode_select] , outputs = video_img_showbox)
video_button = gr.Button("Segment&Track")
video_button.click(segment_video, inputs=[video_input, video_prompt_mode_select, video_category_select, video_custom_category, video_input_expressiong, video_results_select, video_num_inst_select, video_threshold_select, video_mask_image_mix_ration, video_model_select, video_frames_select, video_visual_prompter], outputs=video_output)
if __name__ == '__main__':
demo.launch(inbrowser=True, allowed_paths=["./"])
|