Spaces:
Paused
Paused
# Copyright (c) Facebook, Inc. and its affiliates. | |
import torch | |
from torch.nn import functional as F | |
from detectron2.layers import cat, shapes_to_tensor | |
from detectron2.structures import BitMasks, Boxes | |
# from ..layers import cat, shapes_to_tensor | |
# from ..structures import BitMasks, Boxes | |
""" | |
Shape shorthand in this module: | |
N: minibatch dimension size, i.e. the number of RoIs for instance segmenation or the | |
number of images for semantic segmenation. | |
R: number of ROIs, combined over all images, in the minibatch | |
P: number of points | |
""" | |
def point_sample(input, point_coords, **kwargs): | |
""" | |
A wrapper around :function:`torch.nn.functional.grid_sample` to support 3D point_coords tensors. | |
Unlike :function:`torch.nn.functional.grid_sample` it assumes `point_coords` to lie inside | |
[0, 1] x [0, 1] square. | |
Args: | |
input (Tensor): A tensor of shape (N, C, H, W) that contains features map on a H x W grid. | |
point_coords (Tensor): A tensor of shape (N, P, 2) or (N, Hgrid, Wgrid, 2) that contains | |
[0, 1] x [0, 1] normalized point coordinates. | |
Returns: | |
output (Tensor): A tensor of shape (N, C, P) or (N, C, Hgrid, Wgrid) that contains | |
features for points in `point_coords`. The features are obtained via bilinear | |
interplation from `input` the same way as :function:`torch.nn.functional.grid_sample`. | |
""" | |
add_dim = False | |
if point_coords.dim() == 3: | |
add_dim = True | |
point_coords = point_coords.unsqueeze(2) | |
output = F.grid_sample(input, 2.0 * point_coords - 1.0, **kwargs) | |
if add_dim: | |
output = output.squeeze(3) | |
return output | |
def generate_regular_grid_point_coords(R, side_size, device): | |
""" | |
Generate regular square grid of points in [0, 1] x [0, 1] coordinate space. | |
Args: | |
R (int): The number of grids to sample, one for each region. | |
side_size (int): The side size of the regular grid. | |
device (torch.device): Desired device of returned tensor. | |
Returns: | |
(Tensor): A tensor of shape (R, side_size^2, 2) that contains coordinates | |
for the regular grids. | |
""" | |
aff = torch.tensor([[[0.5, 0, 0.5], [0, 0.5, 0.5]]], device=device) | |
r = F.affine_grid(aff, torch.Size((1, 1, side_size, side_size)), align_corners=False) | |
return r.view(1, -1, 2).expand(R, -1, -1) | |
def get_uncertain_point_coords_with_randomness( | |
coarse_logits, uncertainty_func, num_points, oversample_ratio, importance_sample_ratio | |
): | |
""" | |
Sample points in [0, 1] x [0, 1] coordinate space based on their uncertainty. The unceratinties | |
are calculated for each point using 'uncertainty_func' function that takes point's logit | |
prediction as input. | |
See PointRend paper for details. | |
Args: | |
coarse_logits (Tensor): A tensor of shape (N, C, Hmask, Wmask) or (N, 1, Hmask, Wmask) for | |
class-specific or class-agnostic prediction. | |
uncertainty_func: A function that takes a Tensor of shape (N, C, P) or (N, 1, P) that | |
contains logit predictions for P points and returns their uncertainties as a Tensor of | |
shape (N, 1, P). | |
num_points (int): The number of points P to sample. | |
oversample_ratio (int): Oversampling parameter. | |
importance_sample_ratio (float): Ratio of points that are sampled via importnace sampling. | |
Returns: | |
point_coords (Tensor): A tensor of shape (N, P, 2) that contains the coordinates of P | |
sampled points. | |
""" | |
assert oversample_ratio >= 1 | |
assert importance_sample_ratio <= 1 and importance_sample_ratio >= 0 | |
num_boxes = coarse_logits.shape[0] | |
num_sampled = int(num_points * oversample_ratio) | |
point_coords = torch.rand(num_boxes, num_sampled, 2, device=coarse_logits.device, dtype=coarse_logits.dtype) | |
point_logits = point_sample(coarse_logits, point_coords, align_corners=False) | |
# It is crucial to calculate uncertainty based on the sampled prediction value for the points. | |
# Calculating uncertainties of the coarse predictions first and sampling them for points leads | |
# to incorrect results. | |
# To illustrate this: assume uncertainty_func(logits)=-abs(logits), a sampled point between | |
# two coarse predictions with -1 and 1 logits has 0 logits, and therefore 0 uncertainty value. | |
# However, if we calculate uncertainties for the coarse predictions first, | |
# both will have -1 uncertainty, and the sampled point will get -1 uncertainty. | |
point_uncertainties = uncertainty_func(point_logits) | |
num_uncertain_points = int(importance_sample_ratio * num_points) | |
num_random_points = num_points - num_uncertain_points | |
idx = torch.topk(point_uncertainties[:, 0, :], k=num_uncertain_points, dim=1)[1] | |
shift = num_sampled * torch.arange(num_boxes, dtype=torch.long, device=coarse_logits.device) | |
idx += shift[:, None] | |
point_coords = point_coords.view(-1, 2)[idx.view(-1), :].view( | |
num_boxes, num_uncertain_points, 2 | |
) | |
if num_random_points > 0: | |
point_coords = cat( | |
[ | |
point_coords, | |
torch.rand(num_boxes, num_random_points, 2, device=coarse_logits.device), | |
], | |
dim=1, | |
) | |
return point_coords | |
def get_uncertain_point_coords_on_grid(uncertainty_map, num_points): | |
""" | |
Find `num_points` most uncertain points from `uncertainty_map` grid. | |
Args: | |
uncertainty_map (Tensor): A tensor of shape (N, 1, H, W) that contains uncertainty | |
values for a set of points on a regular H x W grid. | |
num_points (int): The number of points P to select. | |
Returns: | |
point_indices (Tensor): A tensor of shape (N, P) that contains indices from | |
[0, H x W) of the most uncertain points. | |
point_coords (Tensor): A tensor of shape (N, P, 2) that contains [0, 1] x [0, 1] normalized | |
coordinates of the most uncertain points from the H x W grid. | |
""" | |
R, _, H, W = uncertainty_map.shape | |
h_step = 1.0 / float(H) | |
w_step = 1.0 / float(W) | |
num_points = min(H * W, num_points) | |
point_indices = torch.topk(uncertainty_map.view(R, H * W), k=num_points, dim=1)[1] | |
point_coords = torch.zeros(R, num_points, 2, dtype=torch.float, device=uncertainty_map.device) | |
point_coords[:, :, 0] = w_step / 2.0 + (point_indices % W).to(torch.float) * w_step | |
point_coords[:, :, 1] = h_step / 2.0 + (point_indices // W).to(torch.float) * h_step | |
return point_indices, point_coords | |
def point_sample_fine_grained_features(features_list, feature_scales, boxes, point_coords): | |
""" | |
Get features from feature maps in `features_list` that correspond to specific point coordinates | |
inside each bounding box from `boxes`. | |
Args: | |
features_list (list[Tensor]): A list of feature map tensors to get features from. | |
feature_scales (list[float]): A list of scales for tensors in `features_list`. | |
boxes (list[Boxes]): A list of I Boxes objects that contain R_1 + ... + R_I = R boxes all | |
together. | |
point_coords (Tensor): A tensor of shape (R, P, 2) that contains | |
[0, 1] x [0, 1] box-normalized coordinates of the P sampled points. | |
Returns: | |
point_features (Tensor): A tensor of shape (R, C, P) that contains features sampled | |
from all features maps in feature_list for P sampled points for all R boxes in `boxes`. | |
point_coords_wrt_image (Tensor): A tensor of shape (R, P, 2) that contains image-level | |
coordinates of P points. | |
""" | |
cat_boxes = Boxes.cat(boxes) | |
num_boxes = [b.tensor.size(0) for b in boxes] | |
point_coords_wrt_image = get_point_coords_wrt_image(cat_boxes.tensor, point_coords) | |
split_point_coords_wrt_image = torch.split(point_coords_wrt_image, num_boxes) | |
point_features = [] | |
for idx_img, point_coords_wrt_image_per_image in enumerate(split_point_coords_wrt_image): | |
point_features_per_image = [] | |
for idx_feature, feature_map in enumerate(features_list): | |
h, w = feature_map.shape[-2:] | |
scale = shapes_to_tensor([w, h]) / feature_scales[idx_feature] | |
point_coords_scaled = point_coords_wrt_image_per_image / scale.to(feature_map.device) | |
point_features_per_image.append( | |
point_sample( | |
feature_map[idx_img].unsqueeze(0), | |
point_coords_scaled.unsqueeze(0), | |
align_corners=False, | |
) | |
.squeeze(0) | |
.transpose(1, 0) | |
) | |
point_features.append(cat(point_features_per_image, dim=1)) | |
return cat(point_features, dim=0), point_coords_wrt_image | |
def get_point_coords_wrt_image(boxes_coords, point_coords): | |
""" | |
Convert box-normalized [0, 1] x [0, 1] point cooordinates to image-level coordinates. | |
Args: | |
boxes_coords (Tensor): A tensor of shape (R, 4) that contains bounding boxes. | |
coordinates. | |
point_coords (Tensor): A tensor of shape (R, P, 2) that contains | |
[0, 1] x [0, 1] box-normalized coordinates of the P sampled points. | |
Returns: | |
point_coords_wrt_image (Tensor): A tensor of shape (R, P, 2) that contains | |
image-normalized coordinates of P sampled points. | |
""" | |
with torch.no_grad(): | |
point_coords_wrt_image = point_coords.clone() | |
point_coords_wrt_image[:, :, 0] = point_coords_wrt_image[:, :, 0] * ( | |
boxes_coords[:, None, 2] - boxes_coords[:, None, 0] | |
) | |
point_coords_wrt_image[:, :, 1] = point_coords_wrt_image[:, :, 1] * ( | |
boxes_coords[:, None, 3] - boxes_coords[:, None, 1] | |
) | |
point_coords_wrt_image[:, :, 0] += boxes_coords[:, None, 0] | |
point_coords_wrt_image[:, :, 1] += boxes_coords[:, None, 1] | |
return point_coords_wrt_image | |
def sample_point_labels(instances, point_coords): | |
""" | |
Sample point labels from ground truth mask given point_coords. | |
Args: | |
instances (list[Instances]): A list of N Instances, where N is the number of images | |
in the batch. So, i_th elememt of the list contains R_i objects and R_1 + ... + R_N is | |
equal to R. The ground-truth gt_masks in each instance will be used to compute labels. | |
points_coords (Tensor): A tensor of shape (R, P, 2), where R is the total number of | |
instances and P is the number of points for each instance. The coordinates are in | |
the absolute image pixel coordinate space, i.e. [0, H] x [0, W]. | |
Returns: | |
Tensor: A tensor of shape (R, P) that contains the labels of P sampled points. | |
""" | |
with torch.no_grad(): | |
gt_mask_logits = [] | |
point_coords_splits = torch.split( | |
point_coords, [len(instances_per_image) for instances_per_image in instances] | |
) | |
for i, instances_per_image in enumerate(instances): | |
if len(instances_per_image) == 0: | |
continue | |
assert isinstance( | |
instances_per_image.gt_masks, BitMasks | |
), "Point head works with GT in 'bitmask' format. Set INPUT.MASK_FORMAT to 'bitmask'." | |
gt_bit_masks = instances_per_image.gt_masks.tensor | |
h, w = instances_per_image.gt_masks.image_size | |
scale = torch.tensor([w, h], dtype=torch.float, device=gt_bit_masks.device) | |
points_coord_grid_sample_format = point_coords_splits[i] / scale | |
gt_mask_logits.append( | |
point_sample( | |
gt_bit_masks.to(torch.float32).unsqueeze(1), | |
points_coord_grid_sample_format, | |
align_corners=False, | |
).squeeze(1) | |
) | |
point_labels = cat(gt_mask_logits) | |
return point_labels | |