Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
from langchain.chat_models import ChatOpenAI | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.vectorstores.chroma import Chroma | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.document_loaders import ( | |
PyPDFLoader, | |
Docx2txtLoader, | |
TextLoader, | |
) | |
from apikey import openai_api_key | |
os.environ["OPENAI_API_KEY"] = openai_api_key | |
def load_and_process_file(file_data): | |
""" | |
Load and process the uploaded file. | |
Returns a vector store containing the embedded chunks of the file. | |
""" | |
file_name = os.path.join("./", file_data.name) | |
with open(file_name, "wb") as f: | |
f.write(file_data.getvalue()) | |
name, extension = os.path.splitext(file_name) | |
# Load the file using the appropriate loader | |
if extension == ".pdf": | |
loader = PyPDFLoader(file_name) | |
elif extension == ".docx": | |
loader = Docx2txtLoader(file_name) | |
elif extension == ".txt": | |
loader = TextLoader(file_name) | |
else: | |
st.write("This document format is not supported!") | |
return None | |
documents = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=1000, | |
chunk_overlap=200, | |
) | |
chunks = text_splitter.split_documents(documents) | |
embeddings = OpenAIEmbeddings() | |
vector_store = Chroma.from_documents(chunks, embeddings) | |
return vector_store | |
def initialize_chat_model(vector_store): | |
""" | |
Initialize the chat model with the given vector store. | |
Returns a ConversationalRetrievalChain instance. | |
""" | |
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0) | |
retriever = vector_store.as_retriever() | |
return ConversationalRetrievalChain.from_llm(llm, retriever) | |
def main(): | |
""" | |
The main function that runs the Streamlit app. | |
""" | |
st.set_page_config(page_title="Chat with Document", page_icon="π") | |
st.title("π Chat with Document") | |
st.write("Upload a document and ask questions related to its content.") | |
uploaded_file = st.file_uploader( | |
"Upload a file", type=["pdf", "docx", "txt"], key="file_uploader" | |
) | |
add_file = st.button( | |
"Process File", | |
on_click=clear_history, | |
key="process_button", | |
) | |
if uploaded_file and add_file: | |
with st.spinner("Processing file..."): | |
vector_store = load_and_process_file(uploaded_file) | |
if vector_store: | |
crc = initialize_chat_model(vector_store) | |
st.session_state.crc = crc | |
st.success("File processed successfully!") | |
st.markdown("## Ask a Question") | |
question = st.text_area("Enter your question", height=200, key="question_input") | |
submit_button = st.button("Submit", key="submit_button") | |
if submit_button and "crc" in st.session_state: | |
handle_question(question) | |
display_chat_history() | |
def handle_question(question): | |
""" | |
Handles the user's question by generating a response and updating the chat history. | |
""" | |
crc = st.session_state.crc | |
if "history" not in st.session_state: | |
st.session_state["history"] = [] | |
with st.spinner("Generating response..."): | |
response = crc.run( | |
{ | |
"question": question, | |
"chat_history": st.session_state["history"], | |
} | |
) | |
st.session_state["history"].append((question, response)) | |
st.write(response) | |
def display_chat_history(): | |
""" | |
Displays the chat history in the Streamlit app. | |
""" | |
if "history" in st.session_state: | |
st.markdown("## Chat History") | |
for q, a in st.session_state["history"]: | |
st.markdown(f"**Question:** {q}") | |
st.write(a) | |
st.write("---") | |
def clear_history(): | |
""" | |
Clear the chat history stored in the session state. | |
""" | |
if "history" in st.session_state: | |
del st.session_state["history"] | |
if __name__ == "__main__": | |
main() | |