Spaces:
Sleeping
Sleeping
Vinh Nguyen
commited on
Commit
β’
7713f97
1
Parent(s):
36e3301
Update app.py
Browse files
app.py
CHANGED
@@ -2,8 +2,6 @@ import os
|
|
2 |
import tempfile
|
3 |
|
4 |
import streamlit as st
|
5 |
-
from streamlit_extras.add_vertical_space import add_vertical_space
|
6 |
-
from streamlit_extras.colored_header import colored_header
|
7 |
|
8 |
from langchain.callbacks.base import BaseCallbackHandler
|
9 |
from langchain.chains import ConversationalRetrievalChain
|
@@ -14,15 +12,22 @@ from langchain.memory import ConversationBufferMemory
|
|
14 |
from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
|
15 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
16 |
from langchain_community.vectorstores import DocArrayInMemorySearch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
st.set_page_config(page_title="
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
)
|
26 |
|
27 |
|
28 |
@st.cache_resource(ttl="1h")
|
@@ -75,66 +80,65 @@ class StreamHandler(BaseCallbackHandler):
|
|
75 |
|
76 |
class PrintRetrievalHandler(BaseCallbackHandler):
|
77 |
def __init__(self, container):
|
78 |
-
self.status = container.status("**
|
|
|
79 |
|
80 |
def on_retriever_start(self, serialized: dict, query: str, **kwargs):
|
81 |
-
self.status.write(f"**
|
82 |
-
self.status.update(label=f"**Context Retrieval:** {query}")
|
83 |
|
84 |
def on_retriever_end(self, documents, **kwargs):
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
90 |
|
|
|
|
|
|
|
91 |
|
92 |
-
|
|
|
|
|
|
|
93 |
|
94 |
if not openai_api_key:
|
95 |
-
st.info("Please add your OpenAI API key to continue.")
|
96 |
st.stop()
|
97 |
|
98 |
-
uploaded_files
|
99 |
-
|
100 |
-
)
|
101 |
-
if not uploaded_files:
|
102 |
-
st.info("Please upload PDF documents to continue.")
|
103 |
-
st.stop()
|
104 |
|
105 |
-
|
|
|
|
|
106 |
|
107 |
-
# Setup
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
if user_query := st.chat_input(placeholder="Ask me anything!"):
|
133 |
-
st.chat_message("user").write(user_query)
|
134 |
-
|
135 |
-
with st.chat_message("assistant"):
|
136 |
-
retrieval_handler = PrintRetrievalHandler(st.container())
|
137 |
-
stream_handler = StreamHandler(st.empty())
|
138 |
-
response = qa_chain.run(
|
139 |
-
user_query, callbacks=[retrieval_handler, stream_handler]
|
140 |
-
)
|
|
|
2 |
import tempfile
|
3 |
|
4 |
import streamlit as st
|
|
|
|
|
5 |
|
6 |
from langchain.callbacks.base import BaseCallbackHandler
|
7 |
from langchain.chains import ConversationalRetrievalChain
|
|
|
12 |
from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
|
13 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
14 |
from langchain_community.vectorstores import DocArrayInMemorySearch
|
15 |
+
from streamlit_extras.add_vertical_space import add_vertical_space
|
16 |
+
|
17 |
+
# TODO: refactor
|
18 |
+
# TODO: extract class
|
19 |
+
# TODO: modularize
|
20 |
+
# TODO: hide side bar
|
21 |
+
# TODO: make the page attactive
|
22 |
|
23 |
+
st.set_page_config(page_title=":books: InkChatGPT: Chat with Documents", page_icon="π")
|
24 |
|
25 |
+
st.image("./assets/icon.jpg", width=150)
|
26 |
+
st.header(":gray[:books: InkChatGPT]", divider="blue")
|
27 |
+
st.write("**Chat** with Documents")
|
28 |
+
|
29 |
+
# Setup memory for contextual conversation
|
30 |
+
msgs = StreamlitChatMessageHistory()
|
31 |
|
32 |
|
33 |
@st.cache_resource(ttl="1h")
|
|
|
80 |
|
81 |
class PrintRetrievalHandler(BaseCallbackHandler):
|
82 |
def __init__(self, container):
|
83 |
+
self.status = container.status("**Thinking...**")
|
84 |
+
self.container = container
|
85 |
|
86 |
def on_retriever_start(self, serialized: dict, query: str, **kwargs):
|
87 |
+
self.status.write(f"**Checking document for query:** `{query}`. Please wait...")
|
|
|
88 |
|
89 |
def on_retriever_end(self, documents, **kwargs):
|
90 |
+
self.container.empty()
|
91 |
+
|
92 |
+
|
93 |
+
with st.sidebar.expander("Documents"):
|
94 |
+
st.subheader("Files")
|
95 |
+
uploaded_files = st.file_uploader(
|
96 |
+
label="Select PDF files", type=["pdf"], accept_multiple_files=True
|
97 |
+
)
|
98 |
+
|
99 |
|
100 |
+
with st.sidebar.expander("Setup"):
|
101 |
+
st.subheader("API Key")
|
102 |
+
openai_api_key = st.text_input("OpenAI API Key", type="password")
|
103 |
|
104 |
+
is_empty_chat_messages = len(msgs.messages) == 0
|
105 |
+
if is_empty_chat_messages or st.button("Clear message history"):
|
106 |
+
msgs.clear()
|
107 |
+
msgs.add_ai_message("How can I help you?")
|
108 |
|
109 |
if not openai_api_key:
|
110 |
+
st.info("Please add your OpenAI API key in the sidebar to continue.")
|
111 |
st.stop()
|
112 |
|
113 |
+
if uploaded_files:
|
114 |
+
retriever = configure_retriever(uploaded_files)
|
|
|
|
|
|
|
|
|
115 |
|
116 |
+
memory = ConversationBufferMemory(
|
117 |
+
memory_key="chat_history", chat_memory=msgs, return_messages=True
|
118 |
+
)
|
119 |
|
120 |
+
# Setup LLM and QA chain
|
121 |
+
llm = ChatOpenAI(
|
122 |
+
model_name="gpt-3.5-turbo",
|
123 |
+
openai_api_key=openai_api_key,
|
124 |
+
temperature=0,
|
125 |
+
streaming=True,
|
126 |
+
)
|
127 |
+
|
128 |
+
chain = ConversationalRetrievalChain.from_llm(
|
129 |
+
llm, retriever=retriever, memory=memory, verbose=False
|
130 |
+
)
|
131 |
+
|
132 |
+
avatars = {"human": "user", "ai": "assistant"}
|
133 |
+
for msg in msgs.messages:
|
134 |
+
st.chat_message(avatars[msg.type]).write(msg.content)
|
135 |
+
|
136 |
+
if user_query := st.chat_input(placeholder="Ask me anything!"):
|
137 |
+
st.chat_message("user").write(user_query)
|
138 |
+
|
139 |
+
with st.chat_message("assistant"):
|
140 |
+
retrieval_handler = PrintRetrievalHandler(st.empty())
|
141 |
+
stream_handler = StreamHandler(st.empty())
|
142 |
+
response = chain.run(
|
143 |
+
user_query, callbacks=[retrieval_handler, stream_handler]
|
144 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|