import os import streamlit as st from chat_profile import ChatProfileRoleEnum from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain_community.document_loaders import Docx2txtLoader, PyPDFLoader, TextLoader from langchain_community.vectorstores.chroma import Chroma from langchain_openai import ChatOpenAI, OpenAIEmbeddings from langchain_community.chat_message_histories import StreamlitChatMessageHistory from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder from langchain_core.runnables.history import RunnableWithMessageHistory # config page st.set_page_config(page_title="InkChatGPT", page_icon="📚") # Set up memory msgs = StreamlitChatMessageHistory(key="langchain_messages") def load_and_process_file(file_data): """ Load and process the uploaded file. Returns a vector store containing the embedded chunks of the file. """ file_name = os.path.join("./", file_data.name) with open(file_name, "wb") as f: f.write(file_data.getvalue()) _, extension = os.path.splitext(file_name) # Load the file using the appropriate loader if extension == ".pdf": loader = PyPDFLoader(file_name) elif extension == ".docx": loader = Docx2txtLoader(file_name) elif extension == ".txt": loader = TextLoader(file_name) else: st.error("This document format is not supported!") return None documents = loader.load() text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, ) chunks = text_splitter.split_documents(documents) embeddings = OpenAIEmbeddings(openai_api_key=st.secrets.OPENAI_API_KEY) vector_store = Chroma.from_documents(chunks, embeddings) return vector_store def main(): """ The main function that runs the Streamlit app. """ if st.secrets.OPENAI_API_KEY: openai_api_key = st.secrets.OPENAI_API_KEY else: openai_api_key = st.sidebar.text_input("OpenAI API Key", type="password") st.secrets.OPENAI_API_KEY = openai_api_key if not st.secrets.OPENAI_API_KEY: st.info("Please add your OpenAI API key to continue.") if len(msgs.messages) == 0: msgs.add_ai_message( """ Hello, how can I help you? You can upload a document and chat with me to ask questions related to its content. """ ) # Render current messages from StreamlitChatMessageHistory for msg in msgs.messages: st.chat_message(msg.type).write(msg.content) # If user inputs a new prompt, generate and draw a new response if question := st.chat_input( placeholder="Chat with your document", disabled=(not openai_api_key), ): st.chat_message(ChatProfileRoleEnum.Human).write(question) prompt = ChatPromptTemplate.from_messages( [ ("system", "You are an AI chatbot having a conversation with a human."), MessagesPlaceholder(variable_name="history"), (ChatProfileRoleEnum.Human, f"{question}"), ] ) llm = ChatOpenAI( openai_api_key=st.secrets.OPENAI_API_KEY, temperature=0.0, model_name="gpt-3.5-turbo", ) chain = prompt | llm chain_with_history = RunnableWithMessageHistory( chain, lambda session_id: msgs, input_messages_key="question", history_messages_key="history", ) # Note: new messages are saved to history automatically by Langchain during run config = {"configurable": {"session_id": "any"}} response = chain_with_history.invoke({"question": question}, config) st.chat_message(ChatProfileRoleEnum.AI).write(response.content) def build_sidebar(): with st.sidebar: st.title("📚 InkChatGPT") uploaded_file = st.file_uploader( "Select a file", type=["pdf", "docx", "txt"], key="file_uploader" ) add_file = st.button( "Process File", disabled=(not uploaded_file and not st.secrets.OPENAI_API_KEY), ) if add_file and uploaded_file and st.secrets.OPENAI_API_KEY.startswith("sk-"): with st.spinner("💭 Thinking..."): vector_store = load_and_process_file(uploaded_file) if vector_store: msgs.add_ai_message( f""" File: `{uploaded_file.name}`, processed successfully! Feel free to ask me any question. """ ) if __name__ == "__main__": build_sidebar() main()