Spaces:
Running
on
L4
Running
on
L4
vinthony
commited on
Commit
•
a22eb82
0
Parent(s):
init
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +34 -0
- LICENSE +21 -0
- README.md +194 -0
- app.py +86 -0
- config/auido2exp.yaml +58 -0
- config/auido2pose.yaml +49 -0
- config/facerender.yaml +45 -0
- inference.py +134 -0
- modules/__pycache__/gfpgan_inference.cpython-38.pyc +0 -0
- modules/__pycache__/gfpgan_inference.cpython-39.pyc +0 -0
- modules/__pycache__/sadtalker_test.cpython-38.pyc +0 -0
- modules/__pycache__/sadtalker_test.cpython-39.pyc +0 -0
- modules/__pycache__/text2speech.cpython-38.pyc +0 -0
- modules/__pycache__/text2speech.cpython-39.pyc +0 -0
- modules/gfpgan_inference.py +36 -0
- modules/sadtalker_test.py +95 -0
- modules/text2speech.py +12 -0
- packages.txt +1 -0
- requirements.txt +17 -0
- src/__pycache__/generate_batch.cpython-38.pyc +0 -0
- src/__pycache__/generate_facerender_batch.cpython-38.pyc +0 -0
- src/__pycache__/test_audio2coeff.cpython-38.pyc +0 -0
- src/audio2exp_models/__pycache__/audio2exp.cpython-38.pyc +0 -0
- src/audio2exp_models/__pycache__/networks.cpython-38.pyc +0 -0
- src/audio2exp_models/audio2exp.py +30 -0
- src/audio2exp_models/networks.py +74 -0
- src/audio2pose_models/__pycache__/audio2pose.cpython-38.pyc +0 -0
- src/audio2pose_models/__pycache__/audio_encoder.cpython-38.pyc +0 -0
- src/audio2pose_models/__pycache__/cvae.cpython-38.pyc +0 -0
- src/audio2pose_models/__pycache__/discriminator.cpython-38.pyc +0 -0
- src/audio2pose_models/__pycache__/networks.cpython-38.pyc +0 -0
- src/audio2pose_models/__pycache__/res_unet.cpython-38.pyc +0 -0
- src/audio2pose_models/audio2pose.py +93 -0
- src/audio2pose_models/audio_encoder.py +64 -0
- src/audio2pose_models/cvae.py +149 -0
- src/audio2pose_models/discriminator.py +76 -0
- src/audio2pose_models/networks.py +140 -0
- src/audio2pose_models/res_unet.py +65 -0
- src/config/auido2exp.yaml +58 -0
- src/config/auido2pose.yaml +49 -0
- src/config/facerender.yaml +45 -0
- src/face3d/__pycache__/extract_kp_videos.cpython-38.pyc +0 -0
- src/face3d/__pycache__/visualize.cpython-38.pyc +0 -0
- src/face3d/data/__init__.py +116 -0
- src/face3d/data/base_dataset.py +125 -0
- src/face3d/data/flist_dataset.py +125 -0
- src/face3d/data/image_folder.py +66 -0
- src/face3d/data/template_dataset.py +75 -0
- src/face3d/extract_kp_videos.py +107 -0
- src/face3d/models/__init__.py +67 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2023 Tencent AI Lab
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<div align="center">
|
2 |
+
|
3 |
+
<h2> 😭 SadTalker: <span style="font-size:12px">Learning Realistic 3D Motion Coefficients for Stylized Audio-Driven Single Image Talking Face Animation </span> </h2>
|
4 |
+
|
5 |
+
<a href='https://arxiv.org/abs/2211.12194'><img src='https://img.shields.io/badge/ArXiv-2211.14758-red'></a> <a href='https://sadtalker.github.io'><img src='https://img.shields.io/badge/Project-Page-Green'></a> [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Winfredy/SadTalker/blob/main/quick_demo.ipynb)
|
6 |
+
|
7 |
+
<div>
|
8 |
+
<a target='_blank'>Wenxuan Zhang <sup>*,1,2</sup> </a> 
|
9 |
+
<a href='https://vinthony.github.io/' target='_blank'>Xiaodong Cun <sup>*,2</a> 
|
10 |
+
<a href='https://xuanwangvc.github.io/' target='_blank'>Xuan Wang <sup>3</sup></a> 
|
11 |
+
<a href='https://yzhang2016.github.io/' target='_blank'>Yong Zhang <sup>2</sup></a> 
|
12 |
+
<a href='https://xishen0220.github.io/' target='_blank'>Xi Shen <sup>2</sup></a>  </br>
|
13 |
+
<a href='https://yuguo-xjtu.github.io/' target='_blank'>Yu Guo<sup>1</sup> </a> 
|
14 |
+
<a href='https://scholar.google.com/citations?hl=zh-CN&user=4oXBp9UAAAAJ' target='_blank'>Ying Shan <sup>2</sup> </a> 
|
15 |
+
<a target='_blank'>Fei Wang <sup>1</sup> </a> 
|
16 |
+
</div>
|
17 |
+
<br>
|
18 |
+
<div>
|
19 |
+
<sup>1</sup> Xi'an Jiaotong University   <sup>2</sup> Tencent AI Lab   <sup>3</sup> Ant Group  
|
20 |
+
</div>
|
21 |
+
<br>
|
22 |
+
<i><strong><a href='https://arxiv.org/abs/2211.12194' target='_blank'>CVPR 2023</a></strong></i>
|
23 |
+
<br>
|
24 |
+
<br>
|
25 |
+
|
26 |
+
![sadtalker](https://user-images.githubusercontent.com/4397546/222490039-b1f6156b-bf00-405b-9fda-0c9a9156f991.gif)
|
27 |
+
|
28 |
+
<b>TL;DR: A realistic and stylized talking head video generation method from a single image and audio.</b>
|
29 |
+
|
30 |
+
<br>
|
31 |
+
|
32 |
+
</div>
|
33 |
+
|
34 |
+
|
35 |
+
## 📋 Changelog
|
36 |
+
|
37 |
+
|
38 |
+
- __2023.03.22__: Launch new feature: generating the 3d face animation from a single image. New applications about it will be updated.
|
39 |
+
|
40 |
+
- __2023.03.22__: Launch new feature: `still mode`, where only a small head pose will be produced via `python inference.py --still`.
|
41 |
+
- __2023.03.18__: Support `expression intensity`, now you can change the intensity of the generated motion: `python inference.py --expression_scale 1.3 (some value > 1)`.
|
42 |
+
|
43 |
+
- __2023.03.18__: Reconfig the data folders, now you can download the checkpoint automatically using `bash scripts/download_models.sh`.
|
44 |
+
- __2023.03.18__: We have offically integrate the [GFPGAN](https://github.com/TencentARC/GFPGAN) for face enhancement, using `python inference.py --enhancer gfpgan` for better visualization performance.
|
45 |
+
- __2023.03.14__: Specify the version of package `joblib` to remove the errors in using `librosa`, [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/Winfredy/SadTalker/blob/main/quick_demo.ipynb) is online!
|
46 |
+
<details><summary> Previous Changelogs</summary>
|
47 |
+
- 2023.03.06 Solve some bugs in code and errors in installation
|
48 |
+
- 2023.03.03 Release the test code for audio-driven single image animation!
|
49 |
+
- 2023.02.28 SadTalker has been accepted by CVPR 2023!
|
50 |
+
|
51 |
+
</details>
|
52 |
+
|
53 |
+
## 🎼 Pipeline
|
54 |
+
![main_of_sadtalker](https://user-images.githubusercontent.com/4397546/222490596-4c8a2115-49a7-42ad-a2c3-3bb3288a5f36.png)
|
55 |
+
|
56 |
+
|
57 |
+
## 🚧 TODO
|
58 |
+
|
59 |
+
- [x] Generating 2D face from a single Image.
|
60 |
+
- [x] Generating 3D face from Audio.
|
61 |
+
- [x] Generating 4D free-view talking examples from audio and a single image.
|
62 |
+
- [x] Gradio/Colab Demo.
|
63 |
+
- [ ] Full body/image Generation.
|
64 |
+
- [ ] training code of each componments.
|
65 |
+
- [ ] Audio-driven Anime Avatar.
|
66 |
+
- [ ] interpolate ChatGPT for a conversation demo 🤔
|
67 |
+
- [ ] integrade with stable-diffusion-web-ui. (stay tunning!)
|
68 |
+
|
69 |
+
https://user-images.githubusercontent.com/4397546/222513483-89161f58-83d0-40e4-8e41-96c32b47bd4e.mp4
|
70 |
+
|
71 |
+
|
72 |
+
## 🔮 Inference Demo!
|
73 |
+
|
74 |
+
#### Dependence Installation
|
75 |
+
|
76 |
+
<details><summary>CLICK ME</summary>
|
77 |
+
|
78 |
+
```
|
79 |
+
git clone https://github.com/Winfredy/SadTalker.git
|
80 |
+
cd SadTalker
|
81 |
+
conda create -n sadtalker python=3.8
|
82 |
+
source activate sadtalker
|
83 |
+
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
|
84 |
+
conda install ffmpeg
|
85 |
+
pip install dlib-bin # [dlib-bin is much faster than dlib installation] conda install dlib
|
86 |
+
pip install -r requirements.txt
|
87 |
+
|
88 |
+
### install gpfgan for enhancer
|
89 |
+
pip install git+https://github.com/TencentARC/GFPGAN
|
90 |
+
|
91 |
+
```
|
92 |
+
|
93 |
+
</details>
|
94 |
+
|
95 |
+
#### Trained Models
|
96 |
+
<details><summary>CLICK ME</summary>
|
97 |
+
|
98 |
+
You can run the following script to put all the models in the right place.
|
99 |
+
|
100 |
+
```bash
|
101 |
+
bash scripts/download_models.sh
|
102 |
+
```
|
103 |
+
|
104 |
+
OR download our pre-trained model from [google drive](https://drive.google.com/drive/folders/1Wd88VDoLhVzYsQ30_qDVluQr_Xm46yHT?usp=sharing) or our [github release page](https://github.com/Winfredy/SadTalker/releases/tag/v0.0.1), and then, put it in ./checkpoints.
|
105 |
+
|
106 |
+
| Model | Description
|
107 |
+
| :--- | :----------
|
108 |
+
|checkpoints/auido2exp_00300-model.pth | Pre-trained ExpNet in Sadtalker.
|
109 |
+
|checkpoints/auido2pose_00140-model.pth | Pre-trained PoseVAE in Sadtalker.
|
110 |
+
|checkpoints/mapping_00229-model.pth.tar | Pre-trained MappingNet in Sadtalker.
|
111 |
+
|checkpoints/facevid2vid_00189-model.pth.tar | Pre-trained face-vid2vid model from [the reappearance of face-vid2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis).
|
112 |
+
|checkpoints/epoch_20.pth | Pre-trained 3DMM extractor in [Deep3DFaceReconstruction](https://github.com/microsoft/Deep3DFaceReconstruction).
|
113 |
+
|checkpoints/wav2lip.pth | Highly accurate lip-sync model in [Wav2lip](https://github.com/Rudrabha/Wav2Lip).
|
114 |
+
|checkpoints/shape_predictor_68_face_landmarks.dat | Face landmark model used in [dilb](http://dlib.net/).
|
115 |
+
|checkpoints/BFM | 3DMM library file.
|
116 |
+
|checkpoints/hub | Face detection models used in [face alignment](https://github.com/1adrianb/face-alignment).
|
117 |
+
|
118 |
+
</details>
|
119 |
+
|
120 |
+
#### Generating 2D face from a single Image
|
121 |
+
|
122 |
+
```bash
|
123 |
+
python inference.py --driven_audio <audio.wav> \
|
124 |
+
--source_image <video.mp4 or picture.png> \
|
125 |
+
--batch_size <default equals 2, a larger run faster> \
|
126 |
+
--expression_scale <default is 1.0, a larger value will make the motion stronger> \
|
127 |
+
--result_dir <a file to store results> \
|
128 |
+
--enhancer <default is None, you can choose gfpgan or RestoreFormer>
|
129 |
+
```
|
130 |
+
|
131 |
+
<!-- ###### The effectness of enhancer `gfpgan`. -->
|
132 |
+
|
133 |
+
| basic | w/ still mode | w/ exp_scale 1.3 | w/ gfpgan |
|
134 |
+
|:-------------: |:-------------: |:-------------: |:-------------: |
|
135 |
+
| <video src="https://user-images.githubusercontent.com/4397546/226097707-bef1dd41-403e-48d3-a6e6-6adf923843af.mp4"></video> | <video src='https://user-images.githubusercontent.com/4397546/226804933-b717229f-1919-4bd5-b6af-bea7ab66cad3.mp4'></video> | <video style='width:256px' src="https://user-images.githubusercontent.com/4397546/226806013-7752c308-8235-4e7a-9465-72d8fc1aa03d.mp4"></video> | <video style='width:256px' src="https://user-images.githubusercontent.com/4397546/226097717-12a1a2a1-ac0f-428d-b2cb-bd6917aff73e.mp4"></video> |
|
136 |
+
|
137 |
+
> Kindly ensure to activate the audio as the default audio playing is incompatible with GitHub.
|
138 |
+
|
139 |
+
|
140 |
+
<!-- <video src="./docs/art_0##japanese_still.mp4"></video> -->
|
141 |
+
|
142 |
+
|
143 |
+
#### Generating 3D face from Audio
|
144 |
+
|
145 |
+
|
146 |
+
| Input | Animated 3d face |
|
147 |
+
|:-------------: | :-------------: |
|
148 |
+
| <img src='examples/source_image/art_0.png' width='200px'> | <video src="https://user-images.githubusercontent.com/4397546/226856847-5a6a0a4d-a5ec-49e2-9b05-3206db65e8e3.mp4"></video> |
|
149 |
+
|
150 |
+
> Kindly ensure to activate the audio as the default audio playing is incompatible with GitHub.
|
151 |
+
|
152 |
+
More details to generate the 3d face can be founded [here](docs/face3d.md)
|
153 |
+
|
154 |
+
#### Generating 4D free-view talking examples from audio and a single image
|
155 |
+
|
156 |
+
We use `camera_yaw`, `camera_pitch`, `camera_roll` to control camera pose. For example, `--camera_yaw -20 30 10` means the camera yaw degree changes from -20 to 30 and then changes from 30 to 10.
|
157 |
+
```bash
|
158 |
+
python inference.py --driven_audio <audio.wav> \
|
159 |
+
--source_image <video.mp4 or picture.png> \
|
160 |
+
--result_dir <a file to store results> \
|
161 |
+
--camera_yaw -20 30 10
|
162 |
+
```
|
163 |
+
![free_view](https://github.com/Winfredy/SadTalker/blob/main/docs/free_view_result.gif)
|
164 |
+
|
165 |
+
|
166 |
+
## 🛎 Citation
|
167 |
+
|
168 |
+
If you find our work useful in your research, please consider citing:
|
169 |
+
|
170 |
+
```bibtex
|
171 |
+
@article{zhang2022sadtalker,
|
172 |
+
title={SadTalker: Learning Realistic 3D Motion Coefficients for Stylized Audio-Driven Single Image Talking Face Animation},
|
173 |
+
author={Zhang, Wenxuan and Cun, Xiaodong and Wang, Xuan and Zhang, Yong and Shen, Xi and Guo, Yu and Shan, Ying and Wang, Fei},
|
174 |
+
journal={arXiv preprint arXiv:2211.12194},
|
175 |
+
year={2022}
|
176 |
+
}
|
177 |
+
```
|
178 |
+
|
179 |
+
## 💗 Acknowledgements
|
180 |
+
|
181 |
+
Facerender code borrows heavily from [zhanglonghao's reproduction of face-vid2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis) and [PIRender](https://github.com/RenYurui/PIRender). We thank the authors for sharing their wonderful code. In training process, We also use the model from [Deep3DFaceReconstruction](https://github.com/microsoft/Deep3DFaceReconstruction) and [Wav2lip](https://github.com/Rudrabha/Wav2Lip). We thank for their wonderful work.
|
182 |
+
|
183 |
+
|
184 |
+
## 🥂 Related Works
|
185 |
+
- [StyleHEAT: One-Shot High-Resolution Editable Talking Face Generation via Pre-trained StyleGAN (ECCV 2022)](https://github.com/FeiiYin/StyleHEAT)
|
186 |
+
- [CodeTalker: Speech-Driven 3D Facial Animation with Discrete Motion Prior (CVPR 2023)](https://github.com/Doubiiu/CodeTalker)
|
187 |
+
- [VideoReTalking: Audio-based Lip Synchronization for Talking Head Video Editing In the Wild (SIGGRAPH Asia 2022)](https://github.com/vinthony/video-retalking)
|
188 |
+
- [DPE: Disentanglement of Pose and Expression for General Video Portrait Editing (CVPR 2023)](https://github.com/Carlyx/DPE)
|
189 |
+
- [3D GAN Inversion with Facial Symmetry Prior (CVPR 2023)](https://github.com/FeiiYin/SPI/)
|
190 |
+
- [T2M-GPT: Generating Human Motion from Textual Descriptions with Discrete Representations (CVPR 2023)](https://github.com/Mael-zys/T2M-GPT)
|
191 |
+
|
192 |
+
## 📢 Disclaimer
|
193 |
+
|
194 |
+
This is not an official product of Tencent. This repository can only be used for personal/research/non-commercial purposes.
|
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, sys
|
2 |
+
import tempfile
|
3 |
+
import gradio as gr
|
4 |
+
from modules.text2speech import text2speech
|
5 |
+
from modules.gfpgan_inference import gfpgan
|
6 |
+
from modules.sadtalker_test import SadTalker
|
7 |
+
|
8 |
+
def get_driven_audio(audio):
|
9 |
+
if os.path.isfile(audio):
|
10 |
+
return audio
|
11 |
+
else:
|
12 |
+
save_path = tempfile.NamedTemporaryFile(
|
13 |
+
delete=False,
|
14 |
+
suffix=("." + "wav"),
|
15 |
+
)
|
16 |
+
gen_audio = text2speech(audio, save_path.name)
|
17 |
+
return gen_audio, gen_audio
|
18 |
+
|
19 |
+
def get_source_image(image):
|
20 |
+
return image
|
21 |
+
|
22 |
+
def sadtalker_demo(result_dir):
|
23 |
+
|
24 |
+
sad_talker = SadTalker()
|
25 |
+
with gr.Blocks(analytics_enabled=False) as sadtalker_interface:
|
26 |
+
with gr.Row().style(equal_height=False):
|
27 |
+
with gr.Column(variant='panel'):
|
28 |
+
with gr.Tabs(elem_id="sadtalker_source_image"):
|
29 |
+
source_image = gr.Image(visible=False, type="filepath")
|
30 |
+
with gr.TabItem('Upload image'):
|
31 |
+
with gr.Row():
|
32 |
+
input_image = gr.Image(label="Source image", source="upload", type="filepath").style(height=256,width=256)
|
33 |
+
submit_image = gr.Button('Submit', variant='primary')
|
34 |
+
submit_image.click(fn=get_source_image, inputs=input_image, outputs=source_image)
|
35 |
+
|
36 |
+
with gr.Tabs(elem_id="sadtalker_driven_audio"):
|
37 |
+
driven_audio = gr.Audio(visible=False, type="filepath")
|
38 |
+
with gr.TabItem('Upload audio'):
|
39 |
+
with gr.Column(variant='panel'):
|
40 |
+
input_audio1 = gr.Audio(label="Input audio", source="upload", type="filepath")
|
41 |
+
submit_audio_1 = gr.Button('Submit', variant='primary')
|
42 |
+
submit_audio_1.click(fn=get_driven_audio, inputs=input_audio1, outputs=driven_audio)
|
43 |
+
|
44 |
+
with gr.TabItem('Microphone'):
|
45 |
+
with gr.Column(variant='panel'):
|
46 |
+
input_audio2 = gr.Audio(label="Recording audio", source="microphone", type="filepath")
|
47 |
+
submit_audio_2 = gr.Button('Submit', variant='primary')
|
48 |
+
submit_audio_2.click(fn=get_driven_audio, inputs=input_audio2, outputs=driven_audio)
|
49 |
+
|
50 |
+
with gr.TabItem('TTS'):
|
51 |
+
with gr.Column(variant='panel'):
|
52 |
+
with gr.Row().style(equal_height=False):
|
53 |
+
input_text = gr.Textbox(label="Input text", lines=5, value="Please enter some text in English")
|
54 |
+
input_audio3 = gr.Audio(label="Generated audio", type="filepath")
|
55 |
+
submit_audio_3 = gr.Button('Submit', variant='primary')
|
56 |
+
submit_audio_3.click(fn=get_driven_audio, inputs=input_text, outputs=[input_audio3, driven_audio])
|
57 |
+
|
58 |
+
with gr.Column(variant='panel'):
|
59 |
+
gen_video = gr.Video(label="Generated video", format="mp4").style(height=256,width=256)
|
60 |
+
gen_text = gr.Textbox(visible=False)
|
61 |
+
submit = gr.Button('Generate', elem_id="sadtalker_generate", variant='primary')
|
62 |
+
scale = gr.Slider(minimum=1, maximum=8, step=1, label="GFPGAN scale", value=1)
|
63 |
+
new_video = gr.Video(label="New video", format="mp4").style(height=512,width=512)
|
64 |
+
change_scale = gr.Button('Restore video', elem_id="restore_video", variant='primary')
|
65 |
+
|
66 |
+
submit.click(
|
67 |
+
fn=sad_talker.test,
|
68 |
+
inputs=[source_image,
|
69 |
+
driven_audio,
|
70 |
+
gr.Textbox(value=result_dir, visible=False)],
|
71 |
+
outputs=[gen_video, gen_text]
|
72 |
+
)
|
73 |
+
change_scale.click(gfpgan, [scale, gen_text], new_video)
|
74 |
+
|
75 |
+
return sadtalker_interface
|
76 |
+
|
77 |
+
|
78 |
+
if __name__ == "__main__":
|
79 |
+
|
80 |
+
current_code_path = sys.argv[0]
|
81 |
+
current_root_dir = os.path.split(current_code_path)[0]
|
82 |
+
sadtalker_result_dir = os.path.join(current_root_dir, 'results', 'sadtalker')
|
83 |
+
demo = sadtalker_demo(sadtalker_result_dir)
|
84 |
+
demo.launch()
|
85 |
+
|
86 |
+
|
config/auido2exp.yaml
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DATASET:
|
2 |
+
TRAIN_FILE_LIST: /apdcephfs_cq2/share_1290939/wenxuazhang/code/file_list/train.txt
|
3 |
+
EVAL_FILE_LIST: /apdcephfs_cq2/share_1290939/wenxuazhang/code/file_list/val.txt
|
4 |
+
TRAIN_BATCH_SIZE: 32
|
5 |
+
EVAL_BATCH_SIZE: 32
|
6 |
+
EXP: True
|
7 |
+
EXP_DIM: 64
|
8 |
+
FRAME_LEN: 32
|
9 |
+
COEFF_LEN: 73
|
10 |
+
NUM_CLASSES: 46
|
11 |
+
AUDIO_ROOT_PATH: /apdcephfs_cq2/share_1290939/wenxuazhang/voxceleb1/wav
|
12 |
+
COEFF_ROOT_PATH: /apdcephfs_cq2/share_1290939/wenxuazhang/voxceleb1/wav2lip_3dmm
|
13 |
+
LMDB_PATH: /apdcephfs_cq2/share_1290939/shadowcun/datasets/VoxCeleb/v1/imdb
|
14 |
+
DEBUG: True
|
15 |
+
NUM_REPEATS: 2
|
16 |
+
T: 40
|
17 |
+
|
18 |
+
|
19 |
+
MODEL:
|
20 |
+
FRAMEWORK: V2
|
21 |
+
AUDIOENCODER:
|
22 |
+
LEAKY_RELU: True
|
23 |
+
NORM: 'IN'
|
24 |
+
DISCRIMINATOR:
|
25 |
+
LEAKY_RELU: False
|
26 |
+
INPUT_CHANNELS: 6
|
27 |
+
CVAE:
|
28 |
+
AUDIO_EMB_IN_SIZE: 512
|
29 |
+
AUDIO_EMB_OUT_SIZE: 128
|
30 |
+
SEQ_LEN: 32
|
31 |
+
LATENT_SIZE: 256
|
32 |
+
ENCODER_LAYER_SIZES: [192, 1024]
|
33 |
+
DECODER_LAYER_SIZES: [1024, 192]
|
34 |
+
|
35 |
+
|
36 |
+
TRAIN:
|
37 |
+
MAX_EPOCH: 300
|
38 |
+
GENERATOR:
|
39 |
+
LR: 2.0e-5
|
40 |
+
DISCRIMINATOR:
|
41 |
+
LR: 1.0e-5
|
42 |
+
LOSS:
|
43 |
+
W_FEAT: 0
|
44 |
+
W_COEFF_EXP: 2
|
45 |
+
W_LM: 1.0e-2
|
46 |
+
W_LM_MOUTH: 0
|
47 |
+
W_REG: 0
|
48 |
+
W_SYNC: 0
|
49 |
+
W_COLOR: 0
|
50 |
+
W_EXPRESSION: 0
|
51 |
+
W_LIPREADING: 0.01
|
52 |
+
W_LIPREADING_VV: 0
|
53 |
+
W_EYE_BLINK: 4
|
54 |
+
|
55 |
+
TAG:
|
56 |
+
NAME: small_dataset
|
57 |
+
|
58 |
+
|
config/auido2pose.yaml
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DATASET:
|
2 |
+
TRAIN_FILE_LIST: /apdcephfs_cq2/share_1290939/wenxuazhang/code/audio2pose_unet_noAudio/dataset/train_33.txt
|
3 |
+
EVAL_FILE_LIST: /apdcephfs_cq2/share_1290939/wenxuazhang/code/audio2pose_unet_noAudio/dataset/val.txt
|
4 |
+
TRAIN_BATCH_SIZE: 64
|
5 |
+
EVAL_BATCH_SIZE: 1
|
6 |
+
EXP: True
|
7 |
+
EXP_DIM: 64
|
8 |
+
FRAME_LEN: 32
|
9 |
+
COEFF_LEN: 73
|
10 |
+
NUM_CLASSES: 46
|
11 |
+
AUDIO_ROOT_PATH: /apdcephfs_cq2/share_1290939/wenxuazhang/voxceleb1/wav
|
12 |
+
COEFF_ROOT_PATH: /apdcephfs_cq2/share_1290939/shadowcun/datasets/VoxCeleb/v1/imdb
|
13 |
+
DEBUG: True
|
14 |
+
|
15 |
+
|
16 |
+
MODEL:
|
17 |
+
AUDIOENCODER:
|
18 |
+
LEAKY_RELU: True
|
19 |
+
NORM: 'IN'
|
20 |
+
DISCRIMINATOR:
|
21 |
+
LEAKY_RELU: False
|
22 |
+
INPUT_CHANNELS: 6
|
23 |
+
CVAE:
|
24 |
+
AUDIO_EMB_IN_SIZE: 512
|
25 |
+
AUDIO_EMB_OUT_SIZE: 6
|
26 |
+
SEQ_LEN: 32
|
27 |
+
LATENT_SIZE: 64
|
28 |
+
ENCODER_LAYER_SIZES: [192, 128]
|
29 |
+
DECODER_LAYER_SIZES: [128, 192]
|
30 |
+
|
31 |
+
|
32 |
+
TRAIN:
|
33 |
+
MAX_EPOCH: 150
|
34 |
+
GENERATOR:
|
35 |
+
LR: 1.0e-4
|
36 |
+
DISCRIMINATOR:
|
37 |
+
LR: 1.0e-4
|
38 |
+
LOSS:
|
39 |
+
LAMBDA_REG: 1
|
40 |
+
LAMBDA_LANDMARKS: 0
|
41 |
+
LAMBDA_VERTICES: 0
|
42 |
+
LAMBDA_GAN_MOTION: 0.7
|
43 |
+
LAMBDA_GAN_COEFF: 0
|
44 |
+
LAMBDA_KL: 1
|
45 |
+
|
46 |
+
TAG:
|
47 |
+
NAME: cvae_UNET_useAudio_usewav2lipAudioEncoder
|
48 |
+
|
49 |
+
|
config/facerender.yaml
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_params:
|
2 |
+
common_params:
|
3 |
+
num_kp: 15
|
4 |
+
image_channel: 3
|
5 |
+
feature_channel: 32
|
6 |
+
estimate_jacobian: False # True
|
7 |
+
kp_detector_params:
|
8 |
+
temperature: 0.1
|
9 |
+
block_expansion: 32
|
10 |
+
max_features: 1024
|
11 |
+
scale_factor: 0.25 # 0.25
|
12 |
+
num_blocks: 5
|
13 |
+
reshape_channel: 16384 # 16384 = 1024 * 16
|
14 |
+
reshape_depth: 16
|
15 |
+
he_estimator_params:
|
16 |
+
block_expansion: 64
|
17 |
+
max_features: 2048
|
18 |
+
num_bins: 66
|
19 |
+
generator_params:
|
20 |
+
block_expansion: 64
|
21 |
+
max_features: 512
|
22 |
+
num_down_blocks: 2
|
23 |
+
reshape_channel: 32
|
24 |
+
reshape_depth: 16 # 512 = 32 * 16
|
25 |
+
num_resblocks: 6
|
26 |
+
estimate_occlusion_map: True
|
27 |
+
dense_motion_params:
|
28 |
+
block_expansion: 32
|
29 |
+
max_features: 1024
|
30 |
+
num_blocks: 5
|
31 |
+
reshape_depth: 16
|
32 |
+
compress: 4
|
33 |
+
discriminator_params:
|
34 |
+
scales: [1]
|
35 |
+
block_expansion: 32
|
36 |
+
max_features: 512
|
37 |
+
num_blocks: 4
|
38 |
+
sn: True
|
39 |
+
mapping_params:
|
40 |
+
coeff_nc: 70
|
41 |
+
descriptor_nc: 1024
|
42 |
+
layer: 3
|
43 |
+
num_kp: 15
|
44 |
+
num_bins: 66
|
45 |
+
|
inference.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from time import strftime
|
3 |
+
import os, sys, time
|
4 |
+
from argparse import ArgumentParser
|
5 |
+
|
6 |
+
from src.utils.preprocess import CropAndExtract
|
7 |
+
from src.test_audio2coeff import Audio2Coeff
|
8 |
+
from src.facerender.animate import AnimateFromCoeff
|
9 |
+
from src.generate_batch import get_data
|
10 |
+
from src.generate_facerender_batch import get_facerender_data
|
11 |
+
|
12 |
+
def main(args):
|
13 |
+
#torch.backends.cudnn.enabled = False
|
14 |
+
|
15 |
+
pic_path = args.source_image
|
16 |
+
audio_path = args.driven_audio
|
17 |
+
save_dir = os.path.join(args.result_dir, strftime("%Y_%m_%d_%H.%M.%S"))
|
18 |
+
os.makedirs(save_dir, exist_ok=True)
|
19 |
+
pose_style = args.pose_style
|
20 |
+
device = args.device
|
21 |
+
batch_size = args.batch_size
|
22 |
+
camera_yaw_list = args.camera_yaw
|
23 |
+
camera_pitch_list = args.camera_pitch
|
24 |
+
camera_roll_list = args.camera_roll
|
25 |
+
|
26 |
+
current_code_path = sys.argv[0]
|
27 |
+
current_root_path = os.path.split(current_code_path)[0]
|
28 |
+
|
29 |
+
os.environ['TORCH_HOME']=os.path.join(current_root_path, args.checkpoint_dir)
|
30 |
+
|
31 |
+
path_of_lm_croper = os.path.join(current_root_path, args.checkpoint_dir, 'shape_predictor_68_face_landmarks.dat')
|
32 |
+
path_of_net_recon_model = os.path.join(current_root_path, args.checkpoint_dir, 'epoch_20.pth')
|
33 |
+
dir_of_BFM_fitting = os.path.join(current_root_path, args.checkpoint_dir, 'BFM_Fitting')
|
34 |
+
wav2lip_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'wav2lip.pth')
|
35 |
+
|
36 |
+
audio2pose_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2pose_00140-model.pth')
|
37 |
+
audio2pose_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2pose.yaml')
|
38 |
+
|
39 |
+
audio2exp_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'auido2exp_00300-model.pth')
|
40 |
+
audio2exp_yaml_path = os.path.join(current_root_path, 'src', 'config', 'auido2exp.yaml')
|
41 |
+
|
42 |
+
free_view_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'facevid2vid_00189-model.pth.tar')
|
43 |
+
mapping_checkpoint = os.path.join(current_root_path, args.checkpoint_dir, 'mapping_00229-model.pth.tar')
|
44 |
+
facerender_yaml_path = os.path.join(current_root_path, 'src', 'config', 'facerender.yaml')
|
45 |
+
|
46 |
+
#init model
|
47 |
+
print(path_of_net_recon_model)
|
48 |
+
preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device)
|
49 |
+
|
50 |
+
print(audio2pose_checkpoint)
|
51 |
+
print(audio2exp_checkpoint)
|
52 |
+
audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path,
|
53 |
+
audio2exp_checkpoint, audio2exp_yaml_path,
|
54 |
+
wav2lip_checkpoint, device)
|
55 |
+
|
56 |
+
print(free_view_checkpoint)
|
57 |
+
print(mapping_checkpoint)
|
58 |
+
animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint,
|
59 |
+
facerender_yaml_path, device)
|
60 |
+
|
61 |
+
#crop image and extract 3dmm from image
|
62 |
+
first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
|
63 |
+
os.makedirs(first_frame_dir, exist_ok=True)
|
64 |
+
first_coeff_path, crop_pic_path = preprocess_model.generate(pic_path, first_frame_dir)
|
65 |
+
if first_coeff_path is None:
|
66 |
+
print("Can't get the coeffs of the input")
|
67 |
+
return
|
68 |
+
|
69 |
+
#audio2ceoff
|
70 |
+
batch = get_data(first_coeff_path, audio_path, device)
|
71 |
+
coeff_path = audio_to_coeff.generate(batch, save_dir, pose_style)
|
72 |
+
|
73 |
+
# 3dface render
|
74 |
+
if args.face3dvis:
|
75 |
+
from src.face3d.visualize import gen_composed_video
|
76 |
+
gen_composed_video(args, device, first_coeff_path, coeff_path, audio_path, os.path.join(save_dir, '3dface.mp4'))
|
77 |
+
|
78 |
+
#coeff2video
|
79 |
+
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path,
|
80 |
+
batch_size, camera_yaw_list, camera_pitch_list, camera_roll_list,
|
81 |
+
expression_scale=args.expression_scale, still_mode=args.still)
|
82 |
+
|
83 |
+
animate_from_coeff.generate(data, save_dir, enhancer=args.enhancer)
|
84 |
+
video_name = data['video_name']
|
85 |
+
|
86 |
+
if args.enhancer is not None:
|
87 |
+
print(f'The generated video is named {video_name}_enhanced in {save_dir}')
|
88 |
+
else:
|
89 |
+
print(f'The generated video is named {video_name} in {save_dir}')
|
90 |
+
|
91 |
+
return os.path.join(save_dir, video_name+'.mp4'), os.path.join(save_dir, video_name+'.mp4')
|
92 |
+
|
93 |
+
|
94 |
+
if __name__ == '__main__':
|
95 |
+
|
96 |
+
parser = ArgumentParser()
|
97 |
+
parser.add_argument("--driven_audio", default='./examples/driven_audio/japanese.wav', help="path to driven audio")
|
98 |
+
parser.add_argument("--source_image", default='./examples/source_image/art_0.png', help="path to source image")
|
99 |
+
parser.add_argument("--checkpoint_dir", default='./checkpoints', help="path to output")
|
100 |
+
parser.add_argument("--result_dir", default='./results', help="path to output")
|
101 |
+
parser.add_argument("--pose_style", type=int, default=0, help="input pose style from [0, 46)")
|
102 |
+
parser.add_argument("--batch_size", type=int, default=2, help="the batch size of facerender")
|
103 |
+
parser.add_argument("--expression_scale", type=float, default=1., help="the batch size of facerender")
|
104 |
+
parser.add_argument('--camera_yaw', nargs='+', type=int, default=[0], help="the camera yaw degree")
|
105 |
+
parser.add_argument('--camera_pitch', nargs='+', type=int, default=[0], help="the camera pitch degree")
|
106 |
+
parser.add_argument('--camera_roll', nargs='+', type=int, default=[0], help="the camera roll degree")
|
107 |
+
parser.add_argument('--enhancer', type=str, default=None, help="Face enhancer, [GFPGAN]")
|
108 |
+
parser.add_argument("--cpu", dest="cpu", action="store_true")
|
109 |
+
parser.add_argument("--face3dvis", action="store_true", help="generate 3d face and 3d landmarks")
|
110 |
+
parser.add_argument("--still", action="store_true")
|
111 |
+
|
112 |
+
# net structure and parameters
|
113 |
+
parser.add_argument('--net_recon', type=str, default='resnet50', choices=['resnet18', 'resnet34', 'resnet50'], help='not use')
|
114 |
+
parser.add_argument('--init_path', type=str, default=None, help='not Use')
|
115 |
+
parser.add_argument('--use_last_fc',default=False, help='zero initialize the last fc')
|
116 |
+
parser.add_argument('--bfm_folder', type=str, default='./checkpoints/BFM_Fitting/')
|
117 |
+
parser.add_argument('--bfm_model', type=str, default='BFM_model_front.mat', help='bfm model')
|
118 |
+
|
119 |
+
# default renderer parameters
|
120 |
+
parser.add_argument('--focal', type=float, default=1015.)
|
121 |
+
parser.add_argument('--center', type=float, default=112.)
|
122 |
+
parser.add_argument('--camera_d', type=float, default=10.)
|
123 |
+
parser.add_argument('--z_near', type=float, default=5.)
|
124 |
+
parser.add_argument('--z_far', type=float, default=15.)
|
125 |
+
|
126 |
+
args = parser.parse_args()
|
127 |
+
|
128 |
+
if torch.cuda.is_available() and not args.cpu:
|
129 |
+
args.device = "cuda"
|
130 |
+
else:
|
131 |
+
args.device = "cpu"
|
132 |
+
|
133 |
+
main(args)
|
134 |
+
|
modules/__pycache__/gfpgan_inference.cpython-38.pyc
ADDED
Binary file (1.36 kB). View file
|
|
modules/__pycache__/gfpgan_inference.cpython-39.pyc
ADDED
Binary file (1.4 kB). View file
|
|
modules/__pycache__/sadtalker_test.cpython-38.pyc
ADDED
Binary file (3.1 kB). View file
|
|
modules/__pycache__/sadtalker_test.cpython-39.pyc
ADDED
Binary file (3.98 kB). View file
|
|
modules/__pycache__/text2speech.cpython-38.pyc
ADDED
Binary file (473 Bytes). View file
|
|
modules/__pycache__/text2speech.cpython-39.pyc
ADDED
Binary file (477 Bytes). View file
|
|
modules/gfpgan_inference.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os,sys
|
2 |
+
|
3 |
+
def gfpgan(scale, origin_mp4_path):
|
4 |
+
current_code_path = sys.argv[0]
|
5 |
+
current_root_path = os.path.split(current_code_path)[0]
|
6 |
+
print(current_root_path)
|
7 |
+
gfpgan_code_path = current_root_path+'/repositories/GFPGAN/inference_gfpgan.py'
|
8 |
+
print(gfpgan_code_path)
|
9 |
+
|
10 |
+
#video2pic
|
11 |
+
result_dir = os.path.split(origin_mp4_path)[0]
|
12 |
+
video_name = os.path.split(origin_mp4_path)[1]
|
13 |
+
video_name = video_name.split('.')[0]
|
14 |
+
print(video_name)
|
15 |
+
str_scale = str(scale).replace('.', '_')
|
16 |
+
output_mp4_path = os.path.join(result_dir, video_name+'##'+str_scale+'.mp4')
|
17 |
+
temp_output_mp4_path = os.path.join(result_dir, 'temp_'+video_name+'##'+str_scale+'.mp4')
|
18 |
+
|
19 |
+
audio_name = video_name.split('##')[-1]
|
20 |
+
audio_path = os.path.join(result_dir, audio_name+'.wav')
|
21 |
+
temp_pic_dir1 = os.path.join(result_dir, video_name)
|
22 |
+
temp_pic_dir2 = os.path.join(result_dir, video_name+'##'+str_scale)
|
23 |
+
os.makedirs(temp_pic_dir1, exist_ok=True)
|
24 |
+
os.makedirs(temp_pic_dir2, exist_ok=True)
|
25 |
+
cmd1 = 'ffmpeg -i \"{}\" -start_number 0 \"{}\"/%06d.png -loglevel error -y'.format(origin_mp4_path, temp_pic_dir1)
|
26 |
+
os.system(cmd1)
|
27 |
+
cmd2 = f'python {gfpgan_code_path} -i {temp_pic_dir1} -o {temp_pic_dir2} -s {scale}'
|
28 |
+
os.system(cmd2)
|
29 |
+
cmd3 = f'ffmpeg -r 25 -f image2 -i {temp_pic_dir2}/%06d.png -vcodec libx264 -crf 25 -pix_fmt yuv420p {temp_output_mp4_path}'
|
30 |
+
os.system(cmd3)
|
31 |
+
cmd4 = f'ffmpeg -y -i {temp_output_mp4_path} -i {audio_path} -vcodec copy {output_mp4_path}'
|
32 |
+
os.system(cmd4)
|
33 |
+
#shutil.rmtree(temp_pic_dir1)
|
34 |
+
#shutil.rmtree(temp_pic_dir2)
|
35 |
+
|
36 |
+
return output_mp4_path
|
modules/sadtalker_test.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from time import gmtime, strftime
|
3 |
+
import os, sys, shutil
|
4 |
+
from argparse import ArgumentParser
|
5 |
+
from src.utils.preprocess import CropAndExtract
|
6 |
+
from src.test_audio2coeff import Audio2Coeff
|
7 |
+
from src.facerender.animate import AnimateFromCoeff
|
8 |
+
from src.generate_batch import get_data
|
9 |
+
from src.generate_facerender_batch import get_facerender_data
|
10 |
+
|
11 |
+
from modules.text2speech import text2speech
|
12 |
+
|
13 |
+
class SadTalker():
|
14 |
+
|
15 |
+
def __init__(self, checkpoint_path='checkpoints'):
|
16 |
+
|
17 |
+
if torch.cuda.is_available() :
|
18 |
+
device = "cuda"
|
19 |
+
else:
|
20 |
+
device = "cpu"
|
21 |
+
|
22 |
+
current_code_path = sys.argv[0]
|
23 |
+
modules_path = os.path.split(current_code_path)[0]
|
24 |
+
|
25 |
+
current_root_path = './'
|
26 |
+
|
27 |
+
os.environ['TORCH_HOME']=os.path.join(current_root_path, 'checkpoints')
|
28 |
+
|
29 |
+
path_of_lm_croper = os.path.join(current_root_path, 'checkpoints', 'shape_predictor_68_face_landmarks.dat')
|
30 |
+
path_of_net_recon_model = os.path.join(current_root_path, 'checkpoints', 'epoch_20.pth')
|
31 |
+
dir_of_BFM_fitting = os.path.join(current_root_path, 'checkpoints', 'BFM_Fitting')
|
32 |
+
wav2lip_checkpoint = os.path.join(current_root_path, 'checkpoints', 'wav2lip.pth')
|
33 |
+
|
34 |
+
audio2pose_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2pose_00140-model.pth')
|
35 |
+
audio2pose_yaml_path = os.path.join(current_root_path, 'config', 'auido2pose.yaml')
|
36 |
+
|
37 |
+
audio2exp_checkpoint = os.path.join(current_root_path, 'checkpoints', 'auido2exp_00300-model.pth')
|
38 |
+
audio2exp_yaml_path = os.path.join(current_root_path, 'config', 'auido2exp.yaml')
|
39 |
+
|
40 |
+
free_view_checkpoint = os.path.join(current_root_path, 'checkpoints', 'facevid2vid_00189-model.pth.tar')
|
41 |
+
mapping_checkpoint = os.path.join(current_root_path, 'checkpoints', 'mapping_00229-model.pth.tar')
|
42 |
+
facerender_yaml_path = os.path.join(current_root_path, 'config', 'facerender.yaml')
|
43 |
+
|
44 |
+
#init model
|
45 |
+
print(path_of_lm_croper)
|
46 |
+
self.preprocess_model = CropAndExtract(path_of_lm_croper, path_of_net_recon_model, dir_of_BFM_fitting, device)
|
47 |
+
|
48 |
+
print(audio2pose_checkpoint)
|
49 |
+
self.audio_to_coeff = Audio2Coeff(audio2pose_checkpoint, audio2pose_yaml_path,
|
50 |
+
audio2exp_checkpoint, audio2exp_yaml_path, wav2lip_checkpoint, device)
|
51 |
+
print(free_view_checkpoint)
|
52 |
+
self.animate_from_coeff = AnimateFromCoeff(free_view_checkpoint, mapping_checkpoint,
|
53 |
+
facerender_yaml_path, device)
|
54 |
+
self.device = device
|
55 |
+
|
56 |
+
def test(self, source_image, driven_audio, result_dir):
|
57 |
+
|
58 |
+
time_tag = strftime("%Y_%m_%d_%H.%M.%S")
|
59 |
+
save_dir = os.path.join(result_dir, time_tag)
|
60 |
+
os.makedirs(save_dir, exist_ok=True)
|
61 |
+
|
62 |
+
input_dir = os.path.join(save_dir, 'input')
|
63 |
+
os.makedirs(input_dir, exist_ok=True)
|
64 |
+
|
65 |
+
print(source_image)
|
66 |
+
pic_path = os.path.join(input_dir, os.path.basename(source_image))
|
67 |
+
shutil.move(source_image, input_dir)
|
68 |
+
|
69 |
+
if os.path.isfile(driven_audio):
|
70 |
+
audio_path = os.path.join(input_dir, os.path.basename(driven_audio))
|
71 |
+
shutil.move(driven_audio, input_dir)
|
72 |
+
else:
|
73 |
+
text2speech
|
74 |
+
|
75 |
+
|
76 |
+
os.makedirs(save_dir, exist_ok=True)
|
77 |
+
pose_style = 0
|
78 |
+
#crop image and extract 3dmm from image
|
79 |
+
first_frame_dir = os.path.join(save_dir, 'first_frame_dir')
|
80 |
+
os.makedirs(first_frame_dir, exist_ok=True)
|
81 |
+
first_coeff_path, crop_pic_path = self.preprocess_model.generate(pic_path, first_frame_dir)
|
82 |
+
if first_coeff_path is None:
|
83 |
+
raise AttributeError("No face is detected")
|
84 |
+
|
85 |
+
#audio2ceoff
|
86 |
+
batch = get_data(first_coeff_path, audio_path, self.device)
|
87 |
+
coeff_path = self.audio_to_coeff.generate(batch, save_dir, pose_style)
|
88 |
+
#coeff2video
|
89 |
+
batch_size = 4
|
90 |
+
data = get_facerender_data(coeff_path, crop_pic_path, first_coeff_path, audio_path, batch_size)
|
91 |
+
self.animate_from_coeff.generate(data, save_dir)
|
92 |
+
video_name = data['video_name']
|
93 |
+
print(f'The generated video is named {video_name} in {save_dir}')
|
94 |
+
return os.path.join(save_dir, video_name+'.mp4'), os.path.join(save_dir, video_name+'.mp4')
|
95 |
+
|
modules/text2speech.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
def text2speech(txt, audio_path):
|
4 |
+
print(txt)
|
5 |
+
cmd = f'tts --text "{txt}" --out_path {audio_path}'
|
6 |
+
print(cmd)
|
7 |
+
try:
|
8 |
+
os.system(cmd)
|
9 |
+
return audio_path
|
10 |
+
except:
|
11 |
+
print("Error: Failed convert txt to audio")
|
12 |
+
return None
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
requirements.txt
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy==1.23.4
|
2 |
+
face_alignment==1.3.5
|
3 |
+
imageio==2.19.3
|
4 |
+
imageio-ffmpeg==0.4.7
|
5 |
+
librosa==0.6.0
|
6 |
+
numba==0.48.0
|
7 |
+
resampy==0.3.1
|
8 |
+
pydub==0.25.1
|
9 |
+
scipy==1.5.3
|
10 |
+
kornia==0.6.8
|
11 |
+
tqdm
|
12 |
+
yacs==0.1.8
|
13 |
+
pyyaml
|
14 |
+
joblib==1.1.0
|
15 |
+
scikit-image==0.19.3
|
16 |
+
basicsr==1.4.2
|
17 |
+
facexlib==0.2.5
|
src/__pycache__/generate_batch.cpython-38.pyc
ADDED
Binary file (2.81 kB). View file
|
|
src/__pycache__/generate_facerender_batch.cpython-38.pyc
ADDED
Binary file (3.81 kB). View file
|
|
src/__pycache__/test_audio2coeff.cpython-38.pyc
ADDED
Binary file (2.73 kB). View file
|
|
src/audio2exp_models/__pycache__/audio2exp.cpython-38.pyc
ADDED
Binary file (1.07 kB). View file
|
|
src/audio2exp_models/__pycache__/networks.cpython-38.pyc
ADDED
Binary file (2.14 kB). View file
|
|
src/audio2exp_models/audio2exp.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
|
5 |
+
class Audio2Exp(nn.Module):
|
6 |
+
def __init__(self, netG, cfg, device, prepare_training_loss=False):
|
7 |
+
super(Audio2Exp, self).__init__()
|
8 |
+
self.cfg = cfg
|
9 |
+
self.device = device
|
10 |
+
self.netG = netG.to(device)
|
11 |
+
|
12 |
+
def test(self, batch):
|
13 |
+
|
14 |
+
mel_input = batch['indiv_mels'] # bs T 1 80 16
|
15 |
+
bs = mel_input.shape[0]
|
16 |
+
T = mel_input.shape[1]
|
17 |
+
|
18 |
+
ref = batch['ref'][:, :, :64].repeat((1,T,1)) #bs T 64
|
19 |
+
ratio = batch['ratio_gt'] #bs T
|
20 |
+
|
21 |
+
audiox = mel_input.view(-1, 1, 80, 16) # bs*T 1 80 16
|
22 |
+
exp_coeff_pred = self.netG(audiox, ref, ratio) # bs T 64
|
23 |
+
|
24 |
+
# BS x T x 64
|
25 |
+
results_dict = {
|
26 |
+
'exp_coeff_pred': exp_coeff_pred
|
27 |
+
}
|
28 |
+
return results_dict
|
29 |
+
|
30 |
+
|
src/audio2exp_models/networks.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
class Conv2d(nn.Module):
|
6 |
+
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, use_act = True, *args, **kwargs):
|
7 |
+
super().__init__(*args, **kwargs)
|
8 |
+
self.conv_block = nn.Sequential(
|
9 |
+
nn.Conv2d(cin, cout, kernel_size, stride, padding),
|
10 |
+
nn.BatchNorm2d(cout)
|
11 |
+
)
|
12 |
+
self.act = nn.ReLU()
|
13 |
+
self.residual = residual
|
14 |
+
self.use_act = use_act
|
15 |
+
|
16 |
+
def forward(self, x):
|
17 |
+
out = self.conv_block(x)
|
18 |
+
if self.residual:
|
19 |
+
out += x
|
20 |
+
|
21 |
+
if self.use_act:
|
22 |
+
return self.act(out)
|
23 |
+
else:
|
24 |
+
return out
|
25 |
+
|
26 |
+
class SimpleWrapperV2(nn.Module):
|
27 |
+
def __init__(self) -> None:
|
28 |
+
super().__init__()
|
29 |
+
self.audio_encoder = nn.Sequential(
|
30 |
+
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
|
31 |
+
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
32 |
+
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
33 |
+
|
34 |
+
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
|
35 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
36 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
37 |
+
|
38 |
+
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
|
39 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
40 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
41 |
+
|
42 |
+
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
|
43 |
+
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
44 |
+
|
45 |
+
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
|
46 |
+
Conv2d(512, 512, kernel_size=1, stride=1, padding=0),
|
47 |
+
)
|
48 |
+
|
49 |
+
#### load the pre-trained audio_encoder
|
50 |
+
#self.audio_encoder = self.audio_encoder.to(device)
|
51 |
+
'''
|
52 |
+
wav2lip_state_dict = torch.load('/apdcephfs_cq2/share_1290939/wenxuazhang/checkpoints/wav2lip.pth')['state_dict']
|
53 |
+
state_dict = self.audio_encoder.state_dict()
|
54 |
+
|
55 |
+
for k,v in wav2lip_state_dict.items():
|
56 |
+
if 'audio_encoder' in k:
|
57 |
+
print('init:', k)
|
58 |
+
state_dict[k.replace('module.audio_encoder.', '')] = v
|
59 |
+
self.audio_encoder.load_state_dict(state_dict)
|
60 |
+
'''
|
61 |
+
|
62 |
+
self.mapping1 = nn.Linear(512+64+1, 64)
|
63 |
+
#self.mapping2 = nn.Linear(30, 64)
|
64 |
+
#nn.init.constant_(self.mapping1.weight, 0.)
|
65 |
+
nn.init.constant_(self.mapping1.bias, 0.)
|
66 |
+
|
67 |
+
def forward(self, x, ref, ratio):
|
68 |
+
x = self.audio_encoder(x).view(x.size(0), -1)
|
69 |
+
ref_reshape = ref.reshape(x.size(0), -1)
|
70 |
+
ratio = ratio.reshape(x.size(0), -1)
|
71 |
+
|
72 |
+
y = self.mapping1(torch.cat([x, ref_reshape, ratio], dim=1))
|
73 |
+
out = y.reshape(ref.shape[0], ref.shape[1], -1) #+ ref # resudial
|
74 |
+
return out
|
src/audio2pose_models/__pycache__/audio2pose.cpython-38.pyc
ADDED
Binary file (2.94 kB). View file
|
|
src/audio2pose_models/__pycache__/audio_encoder.cpython-38.pyc
ADDED
Binary file (2.37 kB). View file
|
|
src/audio2pose_models/__pycache__/cvae.cpython-38.pyc
ADDED
Binary file (4.69 kB). View file
|
|
src/audio2pose_models/__pycache__/discriminator.cpython-38.pyc
ADDED
Binary file (2.45 kB). View file
|
|
src/audio2pose_models/__pycache__/networks.cpython-38.pyc
ADDED
Binary file (4.74 kB). View file
|
|
src/audio2pose_models/__pycache__/res_unet.cpython-38.pyc
ADDED
Binary file (1.91 kB). View file
|
|
src/audio2pose_models/audio2pose.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from src.audio2pose_models.cvae import CVAE
|
4 |
+
from src.audio2pose_models.discriminator import PoseSequenceDiscriminator
|
5 |
+
from src.audio2pose_models.audio_encoder import AudioEncoder
|
6 |
+
|
7 |
+
class Audio2Pose(nn.Module):
|
8 |
+
def __init__(self, cfg, wav2lip_checkpoint, device='cuda'):
|
9 |
+
super().__init__()
|
10 |
+
self.cfg = cfg
|
11 |
+
self.seq_len = cfg.MODEL.CVAE.SEQ_LEN
|
12 |
+
self.latent_dim = cfg.MODEL.CVAE.LATENT_SIZE
|
13 |
+
self.device = device
|
14 |
+
|
15 |
+
self.audio_encoder = AudioEncoder(wav2lip_checkpoint)
|
16 |
+
self.audio_encoder.eval()
|
17 |
+
for param in self.audio_encoder.parameters():
|
18 |
+
param.requires_grad = False
|
19 |
+
|
20 |
+
self.netG = CVAE(cfg)
|
21 |
+
self.netD_motion = PoseSequenceDiscriminator(cfg)
|
22 |
+
|
23 |
+
self.gan_criterion = nn.MSELoss()
|
24 |
+
self.reg_criterion = nn.L1Loss(reduction='none')
|
25 |
+
self.pair_criterion = nn.PairwiseDistance()
|
26 |
+
self.cosine_loss = nn.CosineSimilarity(dim=1)
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
|
30 |
+
batch = {}
|
31 |
+
coeff_gt = x['gt'].cuda().squeeze(0) #bs frame_len+1 73
|
32 |
+
batch['pose_motion_gt'] = coeff_gt[:, 1:, -9:-3] - coeff_gt[:, :1, -9:-3] #bs frame_len 6
|
33 |
+
batch['ref'] = coeff_gt[:, 0, -9:-3] #bs 6
|
34 |
+
batch['class'] = x['class'].squeeze(0).cuda() # bs
|
35 |
+
indiv_mels= x['indiv_mels'].cuda().squeeze(0) # bs seq_len+1 80 16
|
36 |
+
|
37 |
+
# forward
|
38 |
+
audio_emb_list = []
|
39 |
+
audio_emb = self.audio_encoder(indiv_mels[:, 1:, :, :].unsqueeze(2)) #bs seq_len 512
|
40 |
+
batch['audio_emb'] = audio_emb
|
41 |
+
batch = self.netG(batch)
|
42 |
+
|
43 |
+
pose_motion_pred = batch['pose_motion_pred'] # bs frame_len 6
|
44 |
+
pose_gt = coeff_gt[:, 1:, -9:-3].clone() # bs frame_len 6
|
45 |
+
pose_pred = coeff_gt[:, :1, -9:-3] + pose_motion_pred # bs frame_len 6
|
46 |
+
|
47 |
+
batch['pose_pred'] = pose_pred
|
48 |
+
batch['pose_gt'] = pose_gt
|
49 |
+
|
50 |
+
return batch
|
51 |
+
|
52 |
+
def test(self, x):
|
53 |
+
|
54 |
+
batch = {}
|
55 |
+
ref = x['ref'] #bs 1 70
|
56 |
+
batch['ref'] = x['ref'][:,0,-6:]
|
57 |
+
batch['class'] = x['class']
|
58 |
+
bs = ref.shape[0]
|
59 |
+
|
60 |
+
indiv_mels= x['indiv_mels'] # bs T 1 80 16
|
61 |
+
indiv_mels_use = indiv_mels[:, 1:] # we regard the ref as the first frame
|
62 |
+
num_frames = x['num_frames']
|
63 |
+
num_frames = int(num_frames) - 1
|
64 |
+
|
65 |
+
#
|
66 |
+
div = num_frames//self.seq_len
|
67 |
+
re = num_frames%self.seq_len
|
68 |
+
audio_emb_list = []
|
69 |
+
pose_motion_pred_list = [torch.zeros(batch['ref'].unsqueeze(1).shape, dtype=batch['ref'].dtype,
|
70 |
+
device=batch['ref'].device)]
|
71 |
+
|
72 |
+
for i in range(div):
|
73 |
+
z = torch.randn(bs, self.latent_dim).to(ref.device)
|
74 |
+
batch['z'] = z
|
75 |
+
audio_emb = self.audio_encoder(indiv_mels_use[:, i*self.seq_len:(i+1)*self.seq_len,:,:,:]) #bs seq_len 512
|
76 |
+
batch['audio_emb'] = audio_emb
|
77 |
+
batch = self.netG.test(batch)
|
78 |
+
pose_motion_pred_list.append(batch['pose_motion_pred']) #list of bs seq_len 6
|
79 |
+
if re != 0:
|
80 |
+
z = torch.randn(bs, self.latent_dim).to(ref.device)
|
81 |
+
batch['z'] = z
|
82 |
+
audio_emb = self.audio_encoder(indiv_mels_use[:, -1*self.seq_len:,:,:,:]) #bs seq_len 512
|
83 |
+
batch['audio_emb'] = audio_emb
|
84 |
+
batch = self.netG.test(batch)
|
85 |
+
pose_motion_pred_list.append(batch['pose_motion_pred'][:,-1*re:,:])
|
86 |
+
|
87 |
+
pose_motion_pred = torch.cat(pose_motion_pred_list, dim = 1)
|
88 |
+
batch['pose_motion_pred'] = pose_motion_pred
|
89 |
+
|
90 |
+
pose_pred = ref[:, :1, -6:] + pose_motion_pred # bs T 6
|
91 |
+
|
92 |
+
batch['pose_pred'] = pose_pred
|
93 |
+
return batch
|
src/audio2pose_models/audio_encoder.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
|
5 |
+
class Conv2d(nn.Module):
|
6 |
+
def __init__(self, cin, cout, kernel_size, stride, padding, residual=False, *args, **kwargs):
|
7 |
+
super().__init__(*args, **kwargs)
|
8 |
+
self.conv_block = nn.Sequential(
|
9 |
+
nn.Conv2d(cin, cout, kernel_size, stride, padding),
|
10 |
+
nn.BatchNorm2d(cout)
|
11 |
+
)
|
12 |
+
self.act = nn.ReLU()
|
13 |
+
self.residual = residual
|
14 |
+
|
15 |
+
def forward(self, x):
|
16 |
+
out = self.conv_block(x)
|
17 |
+
if self.residual:
|
18 |
+
out += x
|
19 |
+
return self.act(out)
|
20 |
+
|
21 |
+
class AudioEncoder(nn.Module):
|
22 |
+
def __init__(self, wav2lip_checkpoint):
|
23 |
+
super(AudioEncoder, self).__init__()
|
24 |
+
|
25 |
+
self.audio_encoder = nn.Sequential(
|
26 |
+
Conv2d(1, 32, kernel_size=3, stride=1, padding=1),
|
27 |
+
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
28 |
+
Conv2d(32, 32, kernel_size=3, stride=1, padding=1, residual=True),
|
29 |
+
|
30 |
+
Conv2d(32, 64, kernel_size=3, stride=(3, 1), padding=1),
|
31 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
32 |
+
Conv2d(64, 64, kernel_size=3, stride=1, padding=1, residual=True),
|
33 |
+
|
34 |
+
Conv2d(64, 128, kernel_size=3, stride=3, padding=1),
|
35 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
36 |
+
Conv2d(128, 128, kernel_size=3, stride=1, padding=1, residual=True),
|
37 |
+
|
38 |
+
Conv2d(128, 256, kernel_size=3, stride=(3, 2), padding=1),
|
39 |
+
Conv2d(256, 256, kernel_size=3, stride=1, padding=1, residual=True),
|
40 |
+
|
41 |
+
Conv2d(256, 512, kernel_size=3, stride=1, padding=0),
|
42 |
+
Conv2d(512, 512, kernel_size=1, stride=1, padding=0),)
|
43 |
+
|
44 |
+
#### load the pre-trained audio_encoder\
|
45 |
+
wav2lip_state_dict = torch.load(wav2lip_checkpoint)['state_dict']
|
46 |
+
state_dict = self.audio_encoder.state_dict()
|
47 |
+
|
48 |
+
for k,v in wav2lip_state_dict.items():
|
49 |
+
if 'audio_encoder' in k:
|
50 |
+
state_dict[k.replace('module.audio_encoder.', '')] = v
|
51 |
+
self.audio_encoder.load_state_dict(state_dict)
|
52 |
+
|
53 |
+
|
54 |
+
def forward(self, audio_sequences):
|
55 |
+
# audio_sequences = (B, T, 1, 80, 16)
|
56 |
+
B = audio_sequences.size(0)
|
57 |
+
|
58 |
+
audio_sequences = torch.cat([audio_sequences[:, i] for i in range(audio_sequences.size(1))], dim=0)
|
59 |
+
|
60 |
+
audio_embedding = self.audio_encoder(audio_sequences) # B, 512, 1, 1
|
61 |
+
dim = audio_embedding.shape[1]
|
62 |
+
audio_embedding = audio_embedding.reshape((B, -1, dim, 1, 1))
|
63 |
+
|
64 |
+
return audio_embedding.squeeze(-1).squeeze(-1) #B seq_len+1 512
|
src/audio2pose_models/cvae.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch import nn
|
4 |
+
from src.audio2pose_models.res_unet import ResUnet
|
5 |
+
|
6 |
+
def class2onehot(idx, class_num):
|
7 |
+
|
8 |
+
assert torch.max(idx).item() < class_num
|
9 |
+
onehot = torch.zeros(idx.size(0), class_num).to(idx.device)
|
10 |
+
onehot.scatter_(1, idx, 1)
|
11 |
+
return onehot
|
12 |
+
|
13 |
+
class CVAE(nn.Module):
|
14 |
+
def __init__(self, cfg):
|
15 |
+
super().__init__()
|
16 |
+
encoder_layer_sizes = cfg.MODEL.CVAE.ENCODER_LAYER_SIZES
|
17 |
+
decoder_layer_sizes = cfg.MODEL.CVAE.DECODER_LAYER_SIZES
|
18 |
+
latent_size = cfg.MODEL.CVAE.LATENT_SIZE
|
19 |
+
num_classes = cfg.DATASET.NUM_CLASSES
|
20 |
+
audio_emb_in_size = cfg.MODEL.CVAE.AUDIO_EMB_IN_SIZE
|
21 |
+
audio_emb_out_size = cfg.MODEL.CVAE.AUDIO_EMB_OUT_SIZE
|
22 |
+
seq_len = cfg.MODEL.CVAE.SEQ_LEN
|
23 |
+
|
24 |
+
self.latent_size = latent_size
|
25 |
+
|
26 |
+
self.encoder = ENCODER(encoder_layer_sizes, latent_size, num_classes,
|
27 |
+
audio_emb_in_size, audio_emb_out_size, seq_len)
|
28 |
+
self.decoder = DECODER(decoder_layer_sizes, latent_size, num_classes,
|
29 |
+
audio_emb_in_size, audio_emb_out_size, seq_len)
|
30 |
+
def reparameterize(self, mu, logvar):
|
31 |
+
std = torch.exp(0.5 * logvar)
|
32 |
+
eps = torch.randn_like(std)
|
33 |
+
return mu + eps * std
|
34 |
+
|
35 |
+
def forward(self, batch):
|
36 |
+
batch = self.encoder(batch)
|
37 |
+
mu = batch['mu']
|
38 |
+
logvar = batch['logvar']
|
39 |
+
z = self.reparameterize(mu, logvar)
|
40 |
+
batch['z'] = z
|
41 |
+
return self.decoder(batch)
|
42 |
+
|
43 |
+
def test(self, batch):
|
44 |
+
'''
|
45 |
+
class_id = batch['class']
|
46 |
+
z = torch.randn([class_id.size(0), self.latent_size]).to(class_id.device)
|
47 |
+
batch['z'] = z
|
48 |
+
'''
|
49 |
+
return self.decoder(batch)
|
50 |
+
|
51 |
+
class ENCODER(nn.Module):
|
52 |
+
def __init__(self, layer_sizes, latent_size, num_classes,
|
53 |
+
audio_emb_in_size, audio_emb_out_size, seq_len):
|
54 |
+
super().__init__()
|
55 |
+
|
56 |
+
self.resunet = ResUnet()
|
57 |
+
self.num_classes = num_classes
|
58 |
+
self.seq_len = seq_len
|
59 |
+
|
60 |
+
self.MLP = nn.Sequential()
|
61 |
+
layer_sizes[0] += latent_size + seq_len*audio_emb_out_size + 6
|
62 |
+
for i, (in_size, out_size) in enumerate(zip(layer_sizes[:-1], layer_sizes[1:])):
|
63 |
+
self.MLP.add_module(
|
64 |
+
name="L{:d}".format(i), module=nn.Linear(in_size, out_size))
|
65 |
+
self.MLP.add_module(name="A{:d}".format(i), module=nn.ReLU())
|
66 |
+
|
67 |
+
self.linear_means = nn.Linear(layer_sizes[-1], latent_size)
|
68 |
+
self.linear_logvar = nn.Linear(layer_sizes[-1], latent_size)
|
69 |
+
self.linear_audio = nn.Linear(audio_emb_in_size, audio_emb_out_size)
|
70 |
+
|
71 |
+
self.classbias = nn.Parameter(torch.randn(self.num_classes, latent_size))
|
72 |
+
|
73 |
+
def forward(self, batch):
|
74 |
+
class_id = batch['class']
|
75 |
+
pose_motion_gt = batch['pose_motion_gt'] #bs seq_len 6
|
76 |
+
ref = batch['ref'] #bs 6
|
77 |
+
bs = pose_motion_gt.shape[0]
|
78 |
+
audio_in = batch['audio_emb'] # bs seq_len audio_emb_in_size
|
79 |
+
|
80 |
+
#pose encode
|
81 |
+
pose_emb = self.resunet(pose_motion_gt.unsqueeze(1)) #bs 1 seq_len 6
|
82 |
+
pose_emb = pose_emb.reshape(bs, -1) #bs seq_len*6
|
83 |
+
|
84 |
+
#audio mapping
|
85 |
+
print(audio_in.shape)
|
86 |
+
audio_out = self.linear_audio(audio_in) # bs seq_len audio_emb_out_size
|
87 |
+
audio_out = audio_out.reshape(bs, -1)
|
88 |
+
|
89 |
+
class_bias = self.classbias[class_id] #bs latent_size
|
90 |
+
x_in = torch.cat([ref, pose_emb, audio_out, class_bias], dim=-1) #bs seq_len*(audio_emb_out_size+6)+latent_size
|
91 |
+
x_out = self.MLP(x_in)
|
92 |
+
|
93 |
+
mu = self.linear_means(x_out)
|
94 |
+
logvar = self.linear_means(x_out) #bs latent_size
|
95 |
+
|
96 |
+
batch.update({'mu':mu, 'logvar':logvar})
|
97 |
+
return batch
|
98 |
+
|
99 |
+
class DECODER(nn.Module):
|
100 |
+
def __init__(self, layer_sizes, latent_size, num_classes,
|
101 |
+
audio_emb_in_size, audio_emb_out_size, seq_len):
|
102 |
+
super().__init__()
|
103 |
+
|
104 |
+
self.resunet = ResUnet()
|
105 |
+
self.num_classes = num_classes
|
106 |
+
self.seq_len = seq_len
|
107 |
+
|
108 |
+
self.MLP = nn.Sequential()
|
109 |
+
input_size = latent_size + seq_len*audio_emb_out_size + 6
|
110 |
+
for i, (in_size, out_size) in enumerate(zip([input_size]+layer_sizes[:-1], layer_sizes)):
|
111 |
+
self.MLP.add_module(
|
112 |
+
name="L{:d}".format(i), module=nn.Linear(in_size, out_size))
|
113 |
+
if i+1 < len(layer_sizes):
|
114 |
+
self.MLP.add_module(name="A{:d}".format(i), module=nn.ReLU())
|
115 |
+
else:
|
116 |
+
self.MLP.add_module(name="sigmoid", module=nn.Sigmoid())
|
117 |
+
|
118 |
+
self.pose_linear = nn.Linear(6, 6)
|
119 |
+
self.linear_audio = nn.Linear(audio_emb_in_size, audio_emb_out_size)
|
120 |
+
|
121 |
+
self.classbias = nn.Parameter(torch.randn(self.num_classes, latent_size))
|
122 |
+
|
123 |
+
def forward(self, batch):
|
124 |
+
|
125 |
+
z = batch['z'] #bs latent_size
|
126 |
+
bs = z.shape[0]
|
127 |
+
class_id = batch['class']
|
128 |
+
ref = batch['ref'] #bs 6
|
129 |
+
audio_in = batch['audio_emb'] # bs seq_len audio_emb_in_size
|
130 |
+
#print('audio_in: ', audio_in[:, :, :10])
|
131 |
+
|
132 |
+
audio_out = self.linear_audio(audio_in) # bs seq_len audio_emb_out_size
|
133 |
+
#print('audio_out: ', audio_out[:, :, :10])
|
134 |
+
audio_out = audio_out.reshape([bs, -1]) # bs seq_len*audio_emb_out_size
|
135 |
+
class_bias = self.classbias[class_id] #bs latent_size
|
136 |
+
|
137 |
+
z = z + class_bias
|
138 |
+
x_in = torch.cat([ref, z, audio_out], dim=-1)
|
139 |
+
x_out = self.MLP(x_in) # bs layer_sizes[-1]
|
140 |
+
x_out = x_out.reshape((bs, self.seq_len, -1))
|
141 |
+
|
142 |
+
#print('x_out: ', x_out)
|
143 |
+
|
144 |
+
pose_emb = self.resunet(x_out.unsqueeze(1)) #bs 1 seq_len 6
|
145 |
+
|
146 |
+
pose_motion_pred = self.pose_linear(pose_emb.squeeze(1)) #bs seq_len 6
|
147 |
+
|
148 |
+
batch.update({'pose_motion_pred':pose_motion_pred})
|
149 |
+
return batch
|
src/audio2pose_models/discriminator.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from torch import nn
|
4 |
+
|
5 |
+
class ConvNormRelu(nn.Module):
|
6 |
+
def __init__(self, conv_type='1d', in_channels=3, out_channels=64, downsample=False,
|
7 |
+
kernel_size=None, stride=None, padding=None, norm='BN', leaky=False):
|
8 |
+
super().__init__()
|
9 |
+
if kernel_size is None:
|
10 |
+
if downsample:
|
11 |
+
kernel_size, stride, padding = 4, 2, 1
|
12 |
+
else:
|
13 |
+
kernel_size, stride, padding = 3, 1, 1
|
14 |
+
|
15 |
+
if conv_type == '2d':
|
16 |
+
self.conv = nn.Conv2d(
|
17 |
+
in_channels,
|
18 |
+
out_channels,
|
19 |
+
kernel_size,
|
20 |
+
stride,
|
21 |
+
padding,
|
22 |
+
bias=False,
|
23 |
+
)
|
24 |
+
if norm == 'BN':
|
25 |
+
self.norm = nn.BatchNorm2d(out_channels)
|
26 |
+
elif norm == 'IN':
|
27 |
+
self.norm = nn.InstanceNorm2d(out_channels)
|
28 |
+
else:
|
29 |
+
raise NotImplementedError
|
30 |
+
elif conv_type == '1d':
|
31 |
+
self.conv = nn.Conv1d(
|
32 |
+
in_channels,
|
33 |
+
out_channels,
|
34 |
+
kernel_size,
|
35 |
+
stride,
|
36 |
+
padding,
|
37 |
+
bias=False,
|
38 |
+
)
|
39 |
+
if norm == 'BN':
|
40 |
+
self.norm = nn.BatchNorm1d(out_channels)
|
41 |
+
elif norm == 'IN':
|
42 |
+
self.norm = nn.InstanceNorm1d(out_channels)
|
43 |
+
else:
|
44 |
+
raise NotImplementedError
|
45 |
+
nn.init.kaiming_normal_(self.conv.weight)
|
46 |
+
|
47 |
+
self.act = nn.LeakyReLU(negative_slope=0.2, inplace=False) if leaky else nn.ReLU(inplace=True)
|
48 |
+
|
49 |
+
def forward(self, x):
|
50 |
+
x = self.conv(x)
|
51 |
+
if isinstance(self.norm, nn.InstanceNorm1d):
|
52 |
+
x = self.norm(x.permute((0, 2, 1))).permute((0, 2, 1)) # normalize on [C]
|
53 |
+
else:
|
54 |
+
x = self.norm(x)
|
55 |
+
x = self.act(x)
|
56 |
+
return x
|
57 |
+
|
58 |
+
|
59 |
+
class PoseSequenceDiscriminator(nn.Module):
|
60 |
+
def __init__(self, cfg):
|
61 |
+
super().__init__()
|
62 |
+
self.cfg = cfg
|
63 |
+
leaky = self.cfg.MODEL.DISCRIMINATOR.LEAKY_RELU
|
64 |
+
|
65 |
+
self.seq = nn.Sequential(
|
66 |
+
ConvNormRelu('1d', cfg.MODEL.DISCRIMINATOR.INPUT_CHANNELS, 256, downsample=True, leaky=leaky), # B, 256, 64
|
67 |
+
ConvNormRelu('1d', 256, 512, downsample=True, leaky=leaky), # B, 512, 32
|
68 |
+
ConvNormRelu('1d', 512, 1024, kernel_size=3, stride=1, padding=1, leaky=leaky), # B, 1024, 16
|
69 |
+
nn.Conv1d(1024, 1, kernel_size=3, stride=1, padding=1, bias=True) # B, 1, 16
|
70 |
+
)
|
71 |
+
|
72 |
+
def forward(self, x):
|
73 |
+
x = x.reshape(x.size(0), x.size(1), -1).transpose(1, 2)
|
74 |
+
x = self.seq(x)
|
75 |
+
x = x.squeeze(1)
|
76 |
+
return x
|
src/audio2pose_models/networks.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
import torch
|
3 |
+
|
4 |
+
|
5 |
+
class ResidualConv(nn.Module):
|
6 |
+
def __init__(self, input_dim, output_dim, stride, padding):
|
7 |
+
super(ResidualConv, self).__init__()
|
8 |
+
|
9 |
+
self.conv_block = nn.Sequential(
|
10 |
+
nn.BatchNorm2d(input_dim),
|
11 |
+
nn.ReLU(),
|
12 |
+
nn.Conv2d(
|
13 |
+
input_dim, output_dim, kernel_size=3, stride=stride, padding=padding
|
14 |
+
),
|
15 |
+
nn.BatchNorm2d(output_dim),
|
16 |
+
nn.ReLU(),
|
17 |
+
nn.Conv2d(output_dim, output_dim, kernel_size=3, padding=1),
|
18 |
+
)
|
19 |
+
self.conv_skip = nn.Sequential(
|
20 |
+
nn.Conv2d(input_dim, output_dim, kernel_size=3, stride=stride, padding=1),
|
21 |
+
nn.BatchNorm2d(output_dim),
|
22 |
+
)
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
|
26 |
+
return self.conv_block(x) + self.conv_skip(x)
|
27 |
+
|
28 |
+
|
29 |
+
class Upsample(nn.Module):
|
30 |
+
def __init__(self, input_dim, output_dim, kernel, stride):
|
31 |
+
super(Upsample, self).__init__()
|
32 |
+
|
33 |
+
self.upsample = nn.ConvTranspose2d(
|
34 |
+
input_dim, output_dim, kernel_size=kernel, stride=stride
|
35 |
+
)
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
return self.upsample(x)
|
39 |
+
|
40 |
+
|
41 |
+
class Squeeze_Excite_Block(nn.Module):
|
42 |
+
def __init__(self, channel, reduction=16):
|
43 |
+
super(Squeeze_Excite_Block, self).__init__()
|
44 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
45 |
+
self.fc = nn.Sequential(
|
46 |
+
nn.Linear(channel, channel // reduction, bias=False),
|
47 |
+
nn.ReLU(inplace=True),
|
48 |
+
nn.Linear(channel // reduction, channel, bias=False),
|
49 |
+
nn.Sigmoid(),
|
50 |
+
)
|
51 |
+
|
52 |
+
def forward(self, x):
|
53 |
+
b, c, _, _ = x.size()
|
54 |
+
y = self.avg_pool(x).view(b, c)
|
55 |
+
y = self.fc(y).view(b, c, 1, 1)
|
56 |
+
return x * y.expand_as(x)
|
57 |
+
|
58 |
+
|
59 |
+
class ASPP(nn.Module):
|
60 |
+
def __init__(self, in_dims, out_dims, rate=[6, 12, 18]):
|
61 |
+
super(ASPP, self).__init__()
|
62 |
+
|
63 |
+
self.aspp_block1 = nn.Sequential(
|
64 |
+
nn.Conv2d(
|
65 |
+
in_dims, out_dims, 3, stride=1, padding=rate[0], dilation=rate[0]
|
66 |
+
),
|
67 |
+
nn.ReLU(inplace=True),
|
68 |
+
nn.BatchNorm2d(out_dims),
|
69 |
+
)
|
70 |
+
self.aspp_block2 = nn.Sequential(
|
71 |
+
nn.Conv2d(
|
72 |
+
in_dims, out_dims, 3, stride=1, padding=rate[1], dilation=rate[1]
|
73 |
+
),
|
74 |
+
nn.ReLU(inplace=True),
|
75 |
+
nn.BatchNorm2d(out_dims),
|
76 |
+
)
|
77 |
+
self.aspp_block3 = nn.Sequential(
|
78 |
+
nn.Conv2d(
|
79 |
+
in_dims, out_dims, 3, stride=1, padding=rate[2], dilation=rate[2]
|
80 |
+
),
|
81 |
+
nn.ReLU(inplace=True),
|
82 |
+
nn.BatchNorm2d(out_dims),
|
83 |
+
)
|
84 |
+
|
85 |
+
self.output = nn.Conv2d(len(rate) * out_dims, out_dims, 1)
|
86 |
+
self._init_weights()
|
87 |
+
|
88 |
+
def forward(self, x):
|
89 |
+
x1 = self.aspp_block1(x)
|
90 |
+
x2 = self.aspp_block2(x)
|
91 |
+
x3 = self.aspp_block3(x)
|
92 |
+
out = torch.cat([x1, x2, x3], dim=1)
|
93 |
+
return self.output(out)
|
94 |
+
|
95 |
+
def _init_weights(self):
|
96 |
+
for m in self.modules():
|
97 |
+
if isinstance(m, nn.Conv2d):
|
98 |
+
nn.init.kaiming_normal_(m.weight)
|
99 |
+
elif isinstance(m, nn.BatchNorm2d):
|
100 |
+
m.weight.data.fill_(1)
|
101 |
+
m.bias.data.zero_()
|
102 |
+
|
103 |
+
|
104 |
+
class Upsample_(nn.Module):
|
105 |
+
def __init__(self, scale=2):
|
106 |
+
super(Upsample_, self).__init__()
|
107 |
+
|
108 |
+
self.upsample = nn.Upsample(mode="bilinear", scale_factor=scale)
|
109 |
+
|
110 |
+
def forward(self, x):
|
111 |
+
return self.upsample(x)
|
112 |
+
|
113 |
+
|
114 |
+
class AttentionBlock(nn.Module):
|
115 |
+
def __init__(self, input_encoder, input_decoder, output_dim):
|
116 |
+
super(AttentionBlock, self).__init__()
|
117 |
+
|
118 |
+
self.conv_encoder = nn.Sequential(
|
119 |
+
nn.BatchNorm2d(input_encoder),
|
120 |
+
nn.ReLU(),
|
121 |
+
nn.Conv2d(input_encoder, output_dim, 3, padding=1),
|
122 |
+
nn.MaxPool2d(2, 2),
|
123 |
+
)
|
124 |
+
|
125 |
+
self.conv_decoder = nn.Sequential(
|
126 |
+
nn.BatchNorm2d(input_decoder),
|
127 |
+
nn.ReLU(),
|
128 |
+
nn.Conv2d(input_decoder, output_dim, 3, padding=1),
|
129 |
+
)
|
130 |
+
|
131 |
+
self.conv_attn = nn.Sequential(
|
132 |
+
nn.BatchNorm2d(output_dim),
|
133 |
+
nn.ReLU(),
|
134 |
+
nn.Conv2d(output_dim, 1, 1),
|
135 |
+
)
|
136 |
+
|
137 |
+
def forward(self, x1, x2):
|
138 |
+
out = self.conv_encoder(x1) + self.conv_decoder(x2)
|
139 |
+
out = self.conv_attn(out)
|
140 |
+
return out * x2
|
src/audio2pose_models/res_unet.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from src.audio2pose_models.networks import ResidualConv, Upsample
|
4 |
+
|
5 |
+
|
6 |
+
class ResUnet(nn.Module):
|
7 |
+
def __init__(self, channel=1, filters=[32, 64, 128, 256]):
|
8 |
+
super(ResUnet, self).__init__()
|
9 |
+
|
10 |
+
self.input_layer = nn.Sequential(
|
11 |
+
nn.Conv2d(channel, filters[0], kernel_size=3, padding=1),
|
12 |
+
nn.BatchNorm2d(filters[0]),
|
13 |
+
nn.ReLU(),
|
14 |
+
nn.Conv2d(filters[0], filters[0], kernel_size=3, padding=1),
|
15 |
+
)
|
16 |
+
self.input_skip = nn.Sequential(
|
17 |
+
nn.Conv2d(channel, filters[0], kernel_size=3, padding=1)
|
18 |
+
)
|
19 |
+
|
20 |
+
self.residual_conv_1 = ResidualConv(filters[0], filters[1], stride=(2,1), padding=1)
|
21 |
+
self.residual_conv_2 = ResidualConv(filters[1], filters[2], stride=(2,1), padding=1)
|
22 |
+
|
23 |
+
self.bridge = ResidualConv(filters[2], filters[3], stride=(2,1), padding=1)
|
24 |
+
|
25 |
+
self.upsample_1 = Upsample(filters[3], filters[3], kernel=(2,1), stride=(2,1))
|
26 |
+
self.up_residual_conv1 = ResidualConv(filters[3] + filters[2], filters[2], stride=1, padding=1)
|
27 |
+
|
28 |
+
self.upsample_2 = Upsample(filters[2], filters[2], kernel=(2,1), stride=(2,1))
|
29 |
+
self.up_residual_conv2 = ResidualConv(filters[2] + filters[1], filters[1], stride=1, padding=1)
|
30 |
+
|
31 |
+
self.upsample_3 = Upsample(filters[1], filters[1], kernel=(2,1), stride=(2,1))
|
32 |
+
self.up_residual_conv3 = ResidualConv(filters[1] + filters[0], filters[0], stride=1, padding=1)
|
33 |
+
|
34 |
+
self.output_layer = nn.Sequential(
|
35 |
+
nn.Conv2d(filters[0], 1, 1, 1),
|
36 |
+
nn.Sigmoid(),
|
37 |
+
)
|
38 |
+
|
39 |
+
def forward(self, x):
|
40 |
+
# Encode
|
41 |
+
x1 = self.input_layer(x) + self.input_skip(x)
|
42 |
+
x2 = self.residual_conv_1(x1)
|
43 |
+
x3 = self.residual_conv_2(x2)
|
44 |
+
# Bridge
|
45 |
+
x4 = self.bridge(x3)
|
46 |
+
|
47 |
+
# Decode
|
48 |
+
x4 = self.upsample_1(x4)
|
49 |
+
x5 = torch.cat([x4, x3], dim=1)
|
50 |
+
|
51 |
+
x6 = self.up_residual_conv1(x5)
|
52 |
+
|
53 |
+
x6 = self.upsample_2(x6)
|
54 |
+
x7 = torch.cat([x6, x2], dim=1)
|
55 |
+
|
56 |
+
x8 = self.up_residual_conv2(x7)
|
57 |
+
|
58 |
+
x8 = self.upsample_3(x8)
|
59 |
+
x9 = torch.cat([x8, x1], dim=1)
|
60 |
+
|
61 |
+
x10 = self.up_residual_conv3(x9)
|
62 |
+
|
63 |
+
output = self.output_layer(x10)
|
64 |
+
|
65 |
+
return output
|
src/config/auido2exp.yaml
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DATASET:
|
2 |
+
TRAIN_FILE_LIST: /apdcephfs_cq2/share_1290939/wenxuazhang/code/file_list/train.txt
|
3 |
+
EVAL_FILE_LIST: /apdcephfs_cq2/share_1290939/wenxuazhang/code/file_list/val.txt
|
4 |
+
TRAIN_BATCH_SIZE: 32
|
5 |
+
EVAL_BATCH_SIZE: 32
|
6 |
+
EXP: True
|
7 |
+
EXP_DIM: 64
|
8 |
+
FRAME_LEN: 32
|
9 |
+
COEFF_LEN: 73
|
10 |
+
NUM_CLASSES: 46
|
11 |
+
AUDIO_ROOT_PATH: /apdcephfs_cq2/share_1290939/wenxuazhang/voxceleb1/wav
|
12 |
+
COEFF_ROOT_PATH: /apdcephfs_cq2/share_1290939/wenxuazhang/voxceleb1/wav2lip_3dmm
|
13 |
+
LMDB_PATH: /apdcephfs_cq2/share_1290939/shadowcun/datasets/VoxCeleb/v1/imdb
|
14 |
+
DEBUG: True
|
15 |
+
NUM_REPEATS: 2
|
16 |
+
T: 40
|
17 |
+
|
18 |
+
|
19 |
+
MODEL:
|
20 |
+
FRAMEWORK: V2
|
21 |
+
AUDIOENCODER:
|
22 |
+
LEAKY_RELU: True
|
23 |
+
NORM: 'IN'
|
24 |
+
DISCRIMINATOR:
|
25 |
+
LEAKY_RELU: False
|
26 |
+
INPUT_CHANNELS: 6
|
27 |
+
CVAE:
|
28 |
+
AUDIO_EMB_IN_SIZE: 512
|
29 |
+
AUDIO_EMB_OUT_SIZE: 128
|
30 |
+
SEQ_LEN: 32
|
31 |
+
LATENT_SIZE: 256
|
32 |
+
ENCODER_LAYER_SIZES: [192, 1024]
|
33 |
+
DECODER_LAYER_SIZES: [1024, 192]
|
34 |
+
|
35 |
+
|
36 |
+
TRAIN:
|
37 |
+
MAX_EPOCH: 300
|
38 |
+
GENERATOR:
|
39 |
+
LR: 2.0e-5
|
40 |
+
DISCRIMINATOR:
|
41 |
+
LR: 1.0e-5
|
42 |
+
LOSS:
|
43 |
+
W_FEAT: 0
|
44 |
+
W_COEFF_EXP: 2
|
45 |
+
W_LM: 1.0e-2
|
46 |
+
W_LM_MOUTH: 0
|
47 |
+
W_REG: 0
|
48 |
+
W_SYNC: 0
|
49 |
+
W_COLOR: 0
|
50 |
+
W_EXPRESSION: 0
|
51 |
+
W_LIPREADING: 0.01
|
52 |
+
W_LIPREADING_VV: 0
|
53 |
+
W_EYE_BLINK: 4
|
54 |
+
|
55 |
+
TAG:
|
56 |
+
NAME: small_dataset
|
57 |
+
|
58 |
+
|
src/config/auido2pose.yaml
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DATASET:
|
2 |
+
TRAIN_FILE_LIST: /apdcephfs_cq2/share_1290939/wenxuazhang/code/audio2pose_unet_noAudio/dataset/train_33.txt
|
3 |
+
EVAL_FILE_LIST: /apdcephfs_cq2/share_1290939/wenxuazhang/code/audio2pose_unet_noAudio/dataset/val.txt
|
4 |
+
TRAIN_BATCH_SIZE: 64
|
5 |
+
EVAL_BATCH_SIZE: 1
|
6 |
+
EXP: True
|
7 |
+
EXP_DIM: 64
|
8 |
+
FRAME_LEN: 32
|
9 |
+
COEFF_LEN: 73
|
10 |
+
NUM_CLASSES: 46
|
11 |
+
AUDIO_ROOT_PATH: /apdcephfs_cq2/share_1290939/wenxuazhang/voxceleb1/wav
|
12 |
+
COEFF_ROOT_PATH: /apdcephfs_cq2/share_1290939/shadowcun/datasets/VoxCeleb/v1/imdb
|
13 |
+
DEBUG: True
|
14 |
+
|
15 |
+
|
16 |
+
MODEL:
|
17 |
+
AUDIOENCODER:
|
18 |
+
LEAKY_RELU: True
|
19 |
+
NORM: 'IN'
|
20 |
+
DISCRIMINATOR:
|
21 |
+
LEAKY_RELU: False
|
22 |
+
INPUT_CHANNELS: 6
|
23 |
+
CVAE:
|
24 |
+
AUDIO_EMB_IN_SIZE: 512
|
25 |
+
AUDIO_EMB_OUT_SIZE: 6
|
26 |
+
SEQ_LEN: 32
|
27 |
+
LATENT_SIZE: 64
|
28 |
+
ENCODER_LAYER_SIZES: [192, 128]
|
29 |
+
DECODER_LAYER_SIZES: [128, 192]
|
30 |
+
|
31 |
+
|
32 |
+
TRAIN:
|
33 |
+
MAX_EPOCH: 150
|
34 |
+
GENERATOR:
|
35 |
+
LR: 1.0e-4
|
36 |
+
DISCRIMINATOR:
|
37 |
+
LR: 1.0e-4
|
38 |
+
LOSS:
|
39 |
+
LAMBDA_REG: 1
|
40 |
+
LAMBDA_LANDMARKS: 0
|
41 |
+
LAMBDA_VERTICES: 0
|
42 |
+
LAMBDA_GAN_MOTION: 0.7
|
43 |
+
LAMBDA_GAN_COEFF: 0
|
44 |
+
LAMBDA_KL: 1
|
45 |
+
|
46 |
+
TAG:
|
47 |
+
NAME: cvae_UNET_useAudio_usewav2lipAudioEncoder
|
48 |
+
|
49 |
+
|
src/config/facerender.yaml
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_params:
|
2 |
+
common_params:
|
3 |
+
num_kp: 15
|
4 |
+
image_channel: 3
|
5 |
+
feature_channel: 32
|
6 |
+
estimate_jacobian: False # True
|
7 |
+
kp_detector_params:
|
8 |
+
temperature: 0.1
|
9 |
+
block_expansion: 32
|
10 |
+
max_features: 1024
|
11 |
+
scale_factor: 0.25 # 0.25
|
12 |
+
num_blocks: 5
|
13 |
+
reshape_channel: 16384 # 16384 = 1024 * 16
|
14 |
+
reshape_depth: 16
|
15 |
+
he_estimator_params:
|
16 |
+
block_expansion: 64
|
17 |
+
max_features: 2048
|
18 |
+
num_bins: 66
|
19 |
+
generator_params:
|
20 |
+
block_expansion: 64
|
21 |
+
max_features: 512
|
22 |
+
num_down_blocks: 2
|
23 |
+
reshape_channel: 32
|
24 |
+
reshape_depth: 16 # 512 = 32 * 16
|
25 |
+
num_resblocks: 6
|
26 |
+
estimate_occlusion_map: True
|
27 |
+
dense_motion_params:
|
28 |
+
block_expansion: 32
|
29 |
+
max_features: 1024
|
30 |
+
num_blocks: 5
|
31 |
+
reshape_depth: 16
|
32 |
+
compress: 4
|
33 |
+
discriminator_params:
|
34 |
+
scales: [1]
|
35 |
+
block_expansion: 32
|
36 |
+
max_features: 512
|
37 |
+
num_blocks: 4
|
38 |
+
sn: True
|
39 |
+
mapping_params:
|
40 |
+
coeff_nc: 70
|
41 |
+
descriptor_nc: 1024
|
42 |
+
layer: 3
|
43 |
+
num_kp: 15
|
44 |
+
num_bins: 66
|
45 |
+
|
src/face3d/__pycache__/extract_kp_videos.cpython-38.pyc
ADDED
Binary file (3.57 kB). View file
|
|
src/face3d/__pycache__/visualize.cpython-38.pyc
ADDED
Binary file (1.7 kB). View file
|
|
src/face3d/data/__init__.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""This package includes all the modules related to data loading and preprocessing
|
2 |
+
|
3 |
+
To add a custom dataset class called 'dummy', you need to add a file called 'dummy_dataset.py' and define a subclass 'DummyDataset' inherited from BaseDataset.
|
4 |
+
You need to implement four functions:
|
5 |
+
-- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt).
|
6 |
+
-- <__len__>: return the size of dataset.
|
7 |
+
-- <__getitem__>: get a data point from data loader.
|
8 |
+
-- <modify_commandline_options>: (optionally) add dataset-specific options and set default options.
|
9 |
+
|
10 |
+
Now you can use the dataset class by specifying flag '--dataset_mode dummy'.
|
11 |
+
See our template dataset class 'template_dataset.py' for more details.
|
12 |
+
"""
|
13 |
+
import numpy as np
|
14 |
+
import importlib
|
15 |
+
import torch.utils.data
|
16 |
+
from face3d.data.base_dataset import BaseDataset
|
17 |
+
|
18 |
+
|
19 |
+
def find_dataset_using_name(dataset_name):
|
20 |
+
"""Import the module "data/[dataset_name]_dataset.py".
|
21 |
+
|
22 |
+
In the file, the class called DatasetNameDataset() will
|
23 |
+
be instantiated. It has to be a subclass of BaseDataset,
|
24 |
+
and it is case-insensitive.
|
25 |
+
"""
|
26 |
+
dataset_filename = "data." + dataset_name + "_dataset"
|
27 |
+
datasetlib = importlib.import_module(dataset_filename)
|
28 |
+
|
29 |
+
dataset = None
|
30 |
+
target_dataset_name = dataset_name.replace('_', '') + 'dataset'
|
31 |
+
for name, cls in datasetlib.__dict__.items():
|
32 |
+
if name.lower() == target_dataset_name.lower() \
|
33 |
+
and issubclass(cls, BaseDataset):
|
34 |
+
dataset = cls
|
35 |
+
|
36 |
+
if dataset is None:
|
37 |
+
raise NotImplementedError("In %s.py, there should be a subclass of BaseDataset with class name that matches %s in lowercase." % (dataset_filename, target_dataset_name))
|
38 |
+
|
39 |
+
return dataset
|
40 |
+
|
41 |
+
|
42 |
+
def get_option_setter(dataset_name):
|
43 |
+
"""Return the static method <modify_commandline_options> of the dataset class."""
|
44 |
+
dataset_class = find_dataset_using_name(dataset_name)
|
45 |
+
return dataset_class.modify_commandline_options
|
46 |
+
|
47 |
+
|
48 |
+
def create_dataset(opt, rank=0):
|
49 |
+
"""Create a dataset given the option.
|
50 |
+
|
51 |
+
This function wraps the class CustomDatasetDataLoader.
|
52 |
+
This is the main interface between this package and 'train.py'/'test.py'
|
53 |
+
|
54 |
+
Example:
|
55 |
+
>>> from data import create_dataset
|
56 |
+
>>> dataset = create_dataset(opt)
|
57 |
+
"""
|
58 |
+
data_loader = CustomDatasetDataLoader(opt, rank=rank)
|
59 |
+
dataset = data_loader.load_data()
|
60 |
+
return dataset
|
61 |
+
|
62 |
+
class CustomDatasetDataLoader():
|
63 |
+
"""Wrapper class of Dataset class that performs multi-threaded data loading"""
|
64 |
+
|
65 |
+
def __init__(self, opt, rank=0):
|
66 |
+
"""Initialize this class
|
67 |
+
|
68 |
+
Step 1: create a dataset instance given the name [dataset_mode]
|
69 |
+
Step 2: create a multi-threaded data loader.
|
70 |
+
"""
|
71 |
+
self.opt = opt
|
72 |
+
dataset_class = find_dataset_using_name(opt.dataset_mode)
|
73 |
+
self.dataset = dataset_class(opt)
|
74 |
+
self.sampler = None
|
75 |
+
print("rank %d %s dataset [%s] was created" % (rank, self.dataset.name, type(self.dataset).__name__))
|
76 |
+
if opt.use_ddp and opt.isTrain:
|
77 |
+
world_size = opt.world_size
|
78 |
+
self.sampler = torch.utils.data.distributed.DistributedSampler(
|
79 |
+
self.dataset,
|
80 |
+
num_replicas=world_size,
|
81 |
+
rank=rank,
|
82 |
+
shuffle=not opt.serial_batches
|
83 |
+
)
|
84 |
+
self.dataloader = torch.utils.data.DataLoader(
|
85 |
+
self.dataset,
|
86 |
+
sampler=self.sampler,
|
87 |
+
num_workers=int(opt.num_threads / world_size),
|
88 |
+
batch_size=int(opt.batch_size / world_size),
|
89 |
+
drop_last=True)
|
90 |
+
else:
|
91 |
+
self.dataloader = torch.utils.data.DataLoader(
|
92 |
+
self.dataset,
|
93 |
+
batch_size=opt.batch_size,
|
94 |
+
shuffle=(not opt.serial_batches) and opt.isTrain,
|
95 |
+
num_workers=int(opt.num_threads),
|
96 |
+
drop_last=True
|
97 |
+
)
|
98 |
+
|
99 |
+
def set_epoch(self, epoch):
|
100 |
+
self.dataset.current_epoch = epoch
|
101 |
+
if self.sampler is not None:
|
102 |
+
self.sampler.set_epoch(epoch)
|
103 |
+
|
104 |
+
def load_data(self):
|
105 |
+
return self
|
106 |
+
|
107 |
+
def __len__(self):
|
108 |
+
"""Return the number of data in the dataset"""
|
109 |
+
return min(len(self.dataset), self.opt.max_dataset_size)
|
110 |
+
|
111 |
+
def __iter__(self):
|
112 |
+
"""Return a batch of data"""
|
113 |
+
for i, data in enumerate(self.dataloader):
|
114 |
+
if i * self.opt.batch_size >= self.opt.max_dataset_size:
|
115 |
+
break
|
116 |
+
yield data
|
src/face3d/data/base_dataset.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""This module implements an abstract base class (ABC) 'BaseDataset' for datasets.
|
2 |
+
|
3 |
+
It also includes common transformation functions (e.g., get_transform, __scale_width), which can be later used in subclasses.
|
4 |
+
"""
|
5 |
+
import random
|
6 |
+
import numpy as np
|
7 |
+
import torch.utils.data as data
|
8 |
+
from PIL import Image
|
9 |
+
import torchvision.transforms as transforms
|
10 |
+
from abc import ABC, abstractmethod
|
11 |
+
|
12 |
+
|
13 |
+
class BaseDataset(data.Dataset, ABC):
|
14 |
+
"""This class is an abstract base class (ABC) for datasets.
|
15 |
+
|
16 |
+
To create a subclass, you need to implement the following four functions:
|
17 |
+
-- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt).
|
18 |
+
-- <__len__>: return the size of dataset.
|
19 |
+
-- <__getitem__>: get a data point.
|
20 |
+
-- <modify_commandline_options>: (optionally) add dataset-specific options and set default options.
|
21 |
+
"""
|
22 |
+
|
23 |
+
def __init__(self, opt):
|
24 |
+
"""Initialize the class; save the options in the class
|
25 |
+
|
26 |
+
Parameters:
|
27 |
+
opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions
|
28 |
+
"""
|
29 |
+
self.opt = opt
|
30 |
+
# self.root = opt.dataroot
|
31 |
+
self.current_epoch = 0
|
32 |
+
|
33 |
+
@staticmethod
|
34 |
+
def modify_commandline_options(parser, is_train):
|
35 |
+
"""Add new dataset-specific options, and rewrite default values for existing options.
|
36 |
+
|
37 |
+
Parameters:
|
38 |
+
parser -- original option parser
|
39 |
+
is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
the modified parser.
|
43 |
+
"""
|
44 |
+
return parser
|
45 |
+
|
46 |
+
@abstractmethod
|
47 |
+
def __len__(self):
|
48 |
+
"""Return the total number of images in the dataset."""
|
49 |
+
return 0
|
50 |
+
|
51 |
+
@abstractmethod
|
52 |
+
def __getitem__(self, index):
|
53 |
+
"""Return a data point and its metadata information.
|
54 |
+
|
55 |
+
Parameters:
|
56 |
+
index - - a random integer for data indexing
|
57 |
+
|
58 |
+
Returns:
|
59 |
+
a dictionary of data with their names. It ususally contains the data itself and its metadata information.
|
60 |
+
"""
|
61 |
+
pass
|
62 |
+
|
63 |
+
|
64 |
+
def get_transform(grayscale=False):
|
65 |
+
transform_list = []
|
66 |
+
if grayscale:
|
67 |
+
transform_list.append(transforms.Grayscale(1))
|
68 |
+
transform_list += [transforms.ToTensor()]
|
69 |
+
return transforms.Compose(transform_list)
|
70 |
+
|
71 |
+
def get_affine_mat(opt, size):
|
72 |
+
shift_x, shift_y, scale, rot_angle, flip = 0., 0., 1., 0., False
|
73 |
+
w, h = size
|
74 |
+
|
75 |
+
if 'shift' in opt.preprocess:
|
76 |
+
shift_pixs = int(opt.shift_pixs)
|
77 |
+
shift_x = random.randint(-shift_pixs, shift_pixs)
|
78 |
+
shift_y = random.randint(-shift_pixs, shift_pixs)
|
79 |
+
if 'scale' in opt.preprocess:
|
80 |
+
scale = 1 + opt.scale_delta * (2 * random.random() - 1)
|
81 |
+
if 'rot' in opt.preprocess:
|
82 |
+
rot_angle = opt.rot_angle * (2 * random.random() - 1)
|
83 |
+
rot_rad = -rot_angle * np.pi/180
|
84 |
+
if 'flip' in opt.preprocess:
|
85 |
+
flip = random.random() > 0.5
|
86 |
+
|
87 |
+
shift_to_origin = np.array([1, 0, -w//2, 0, 1, -h//2, 0, 0, 1]).reshape([3, 3])
|
88 |
+
flip_mat = np.array([-1 if flip else 1, 0, 0, 0, 1, 0, 0, 0, 1]).reshape([3, 3])
|
89 |
+
shift_mat = np.array([1, 0, shift_x, 0, 1, shift_y, 0, 0, 1]).reshape([3, 3])
|
90 |
+
rot_mat = np.array([np.cos(rot_rad), np.sin(rot_rad), 0, -np.sin(rot_rad), np.cos(rot_rad), 0, 0, 0, 1]).reshape([3, 3])
|
91 |
+
scale_mat = np.array([scale, 0, 0, 0, scale, 0, 0, 0, 1]).reshape([3, 3])
|
92 |
+
shift_to_center = np.array([1, 0, w//2, 0, 1, h//2, 0, 0, 1]).reshape([3, 3])
|
93 |
+
|
94 |
+
affine = shift_to_center @ scale_mat @ rot_mat @ shift_mat @ flip_mat @ shift_to_origin
|
95 |
+
affine_inv = np.linalg.inv(affine)
|
96 |
+
return affine, affine_inv, flip
|
97 |
+
|
98 |
+
def apply_img_affine(img, affine_inv, method=Image.BICUBIC):
|
99 |
+
return img.transform(img.size, Image.AFFINE, data=affine_inv.flatten()[:6], resample=Image.BICUBIC)
|
100 |
+
|
101 |
+
def apply_lm_affine(landmark, affine, flip, size):
|
102 |
+
_, h = size
|
103 |
+
lm = landmark.copy()
|
104 |
+
lm[:, 1] = h - 1 - lm[:, 1]
|
105 |
+
lm = np.concatenate((lm, np.ones([lm.shape[0], 1])), -1)
|
106 |
+
lm = lm @ np.transpose(affine)
|
107 |
+
lm[:, :2] = lm[:, :2] / lm[:, 2:]
|
108 |
+
lm = lm[:, :2]
|
109 |
+
lm[:, 1] = h - 1 - lm[:, 1]
|
110 |
+
if flip:
|
111 |
+
lm_ = lm.copy()
|
112 |
+
lm_[:17] = lm[16::-1]
|
113 |
+
lm_[17:22] = lm[26:21:-1]
|
114 |
+
lm_[22:27] = lm[21:16:-1]
|
115 |
+
lm_[31:36] = lm[35:30:-1]
|
116 |
+
lm_[36:40] = lm[45:41:-1]
|
117 |
+
lm_[40:42] = lm[47:45:-1]
|
118 |
+
lm_[42:46] = lm[39:35:-1]
|
119 |
+
lm_[46:48] = lm[41:39:-1]
|
120 |
+
lm_[48:55] = lm[54:47:-1]
|
121 |
+
lm_[55:60] = lm[59:54:-1]
|
122 |
+
lm_[60:65] = lm[64:59:-1]
|
123 |
+
lm_[65:68] = lm[67:64:-1]
|
124 |
+
lm = lm_
|
125 |
+
return lm
|
src/face3d/data/flist_dataset.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""This script defines the custom dataset for Deep3DFaceRecon_pytorch
|
2 |
+
"""
|
3 |
+
|
4 |
+
import os.path
|
5 |
+
from data.base_dataset import BaseDataset, get_transform, get_affine_mat, apply_img_affine, apply_lm_affine
|
6 |
+
from data.image_folder import make_dataset
|
7 |
+
from PIL import Image
|
8 |
+
import random
|
9 |
+
import util.util as util
|
10 |
+
import numpy as np
|
11 |
+
import json
|
12 |
+
import torch
|
13 |
+
from scipy.io import loadmat, savemat
|
14 |
+
import pickle
|
15 |
+
from util.preprocess import align_img, estimate_norm
|
16 |
+
from util.load_mats import load_lm3d
|
17 |
+
|
18 |
+
|
19 |
+
def default_flist_reader(flist):
|
20 |
+
"""
|
21 |
+
flist format: impath label\nimpath label\n ...(same to caffe's filelist)
|
22 |
+
"""
|
23 |
+
imlist = []
|
24 |
+
with open(flist, 'r') as rf:
|
25 |
+
for line in rf.readlines():
|
26 |
+
impath = line.strip()
|
27 |
+
imlist.append(impath)
|
28 |
+
|
29 |
+
return imlist
|
30 |
+
|
31 |
+
def jason_flist_reader(flist):
|
32 |
+
with open(flist, 'r') as fp:
|
33 |
+
info = json.load(fp)
|
34 |
+
return info
|
35 |
+
|
36 |
+
def parse_label(label):
|
37 |
+
return torch.tensor(np.array(label).astype(np.float32))
|
38 |
+
|
39 |
+
|
40 |
+
class FlistDataset(BaseDataset):
|
41 |
+
"""
|
42 |
+
It requires one directories to host training images '/path/to/data/train'
|
43 |
+
You can train the model with the dataset flag '--dataroot /path/to/data'.
|
44 |
+
"""
|
45 |
+
|
46 |
+
def __init__(self, opt):
|
47 |
+
"""Initialize this dataset class.
|
48 |
+
|
49 |
+
Parameters:
|
50 |
+
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
|
51 |
+
"""
|
52 |
+
BaseDataset.__init__(self, opt)
|
53 |
+
|
54 |
+
self.lm3d_std = load_lm3d(opt.bfm_folder)
|
55 |
+
|
56 |
+
msk_names = default_flist_reader(opt.flist)
|
57 |
+
self.msk_paths = [os.path.join(opt.data_root, i) for i in msk_names]
|
58 |
+
|
59 |
+
self.size = len(self.msk_paths)
|
60 |
+
self.opt = opt
|
61 |
+
|
62 |
+
self.name = 'train' if opt.isTrain else 'val'
|
63 |
+
if '_' in opt.flist:
|
64 |
+
self.name += '_' + opt.flist.split(os.sep)[-1].split('_')[0]
|
65 |
+
|
66 |
+
|
67 |
+
def __getitem__(self, index):
|
68 |
+
"""Return a data point and its metadata information.
|
69 |
+
|
70 |
+
Parameters:
|
71 |
+
index (int) -- a random integer for data indexing
|
72 |
+
|
73 |
+
Returns a dictionary that contains A, B, A_paths and B_paths
|
74 |
+
img (tensor) -- an image in the input domain
|
75 |
+
msk (tensor) -- its corresponding attention mask
|
76 |
+
lm (tensor) -- its corresponding 3d landmarks
|
77 |
+
im_paths (str) -- image paths
|
78 |
+
aug_flag (bool) -- a flag used to tell whether its raw or augmented
|
79 |
+
"""
|
80 |
+
msk_path = self.msk_paths[index % self.size] # make sure index is within then range
|
81 |
+
img_path = msk_path.replace('mask/', '')
|
82 |
+
lm_path = '.'.join(msk_path.replace('mask', 'landmarks').split('.')[:-1]) + '.txt'
|
83 |
+
|
84 |
+
raw_img = Image.open(img_path).convert('RGB')
|
85 |
+
raw_msk = Image.open(msk_path).convert('RGB')
|
86 |
+
raw_lm = np.loadtxt(lm_path).astype(np.float32)
|
87 |
+
|
88 |
+
_, img, lm, msk = align_img(raw_img, raw_lm, self.lm3d_std, raw_msk)
|
89 |
+
|
90 |
+
aug_flag = self.opt.use_aug and self.opt.isTrain
|
91 |
+
if aug_flag:
|
92 |
+
img, lm, msk = self._augmentation(img, lm, self.opt, msk)
|
93 |
+
|
94 |
+
_, H = img.size
|
95 |
+
M = estimate_norm(lm, H)
|
96 |
+
transform = get_transform()
|
97 |
+
img_tensor = transform(img)
|
98 |
+
msk_tensor = transform(msk)[:1, ...]
|
99 |
+
lm_tensor = parse_label(lm)
|
100 |
+
M_tensor = parse_label(M)
|
101 |
+
|
102 |
+
|
103 |
+
return {'imgs': img_tensor,
|
104 |
+
'lms': lm_tensor,
|
105 |
+
'msks': msk_tensor,
|
106 |
+
'M': M_tensor,
|
107 |
+
'im_paths': img_path,
|
108 |
+
'aug_flag': aug_flag,
|
109 |
+
'dataset': self.name}
|
110 |
+
|
111 |
+
def _augmentation(self, img, lm, opt, msk=None):
|
112 |
+
affine, affine_inv, flip = get_affine_mat(opt, img.size)
|
113 |
+
img = apply_img_affine(img, affine_inv)
|
114 |
+
lm = apply_lm_affine(lm, affine, flip, img.size)
|
115 |
+
if msk is not None:
|
116 |
+
msk = apply_img_affine(msk, affine_inv, method=Image.BILINEAR)
|
117 |
+
return img, lm, msk
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
def __len__(self):
|
123 |
+
"""Return the total number of images in the dataset.
|
124 |
+
"""
|
125 |
+
return self.size
|
src/face3d/data/image_folder.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A modified image folder class
|
2 |
+
|
3 |
+
We modify the official PyTorch image folder (https://github.com/pytorch/vision/blob/master/torchvision/datasets/folder.py)
|
4 |
+
so that this class can load images from both current directory and its subdirectories.
|
5 |
+
"""
|
6 |
+
import numpy as np
|
7 |
+
import torch.utils.data as data
|
8 |
+
|
9 |
+
from PIL import Image
|
10 |
+
import os
|
11 |
+
import os.path
|
12 |
+
|
13 |
+
IMG_EXTENSIONS = [
|
14 |
+
'.jpg', '.JPG', '.jpeg', '.JPEG',
|
15 |
+
'.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP',
|
16 |
+
'.tif', '.TIF', '.tiff', '.TIFF',
|
17 |
+
]
|
18 |
+
|
19 |
+
|
20 |
+
def is_image_file(filename):
|
21 |
+
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
|
22 |
+
|
23 |
+
|
24 |
+
def make_dataset(dir, max_dataset_size=float("inf")):
|
25 |
+
images = []
|
26 |
+
assert os.path.isdir(dir) or os.path.islink(dir), '%s is not a valid directory' % dir
|
27 |
+
|
28 |
+
for root, _, fnames in sorted(os.walk(dir, followlinks=True)):
|
29 |
+
for fname in fnames:
|
30 |
+
if is_image_file(fname):
|
31 |
+
path = os.path.join(root, fname)
|
32 |
+
images.append(path)
|
33 |
+
return images[:min(max_dataset_size, len(images))]
|
34 |
+
|
35 |
+
|
36 |
+
def default_loader(path):
|
37 |
+
return Image.open(path).convert('RGB')
|
38 |
+
|
39 |
+
|
40 |
+
class ImageFolder(data.Dataset):
|
41 |
+
|
42 |
+
def __init__(self, root, transform=None, return_paths=False,
|
43 |
+
loader=default_loader):
|
44 |
+
imgs = make_dataset(root)
|
45 |
+
if len(imgs) == 0:
|
46 |
+
raise(RuntimeError("Found 0 images in: " + root + "\n"
|
47 |
+
"Supported image extensions are: " + ",".join(IMG_EXTENSIONS)))
|
48 |
+
|
49 |
+
self.root = root
|
50 |
+
self.imgs = imgs
|
51 |
+
self.transform = transform
|
52 |
+
self.return_paths = return_paths
|
53 |
+
self.loader = loader
|
54 |
+
|
55 |
+
def __getitem__(self, index):
|
56 |
+
path = self.imgs[index]
|
57 |
+
img = self.loader(path)
|
58 |
+
if self.transform is not None:
|
59 |
+
img = self.transform(img)
|
60 |
+
if self.return_paths:
|
61 |
+
return img, path
|
62 |
+
else:
|
63 |
+
return img
|
64 |
+
|
65 |
+
def __len__(self):
|
66 |
+
return len(self.imgs)
|
src/face3d/data/template_dataset.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Dataset class template
|
2 |
+
|
3 |
+
This module provides a template for users to implement custom datasets.
|
4 |
+
You can specify '--dataset_mode template' to use this dataset.
|
5 |
+
The class name should be consistent with both the filename and its dataset_mode option.
|
6 |
+
The filename should be <dataset_mode>_dataset.py
|
7 |
+
The class name should be <Dataset_mode>Dataset.py
|
8 |
+
You need to implement the following functions:
|
9 |
+
-- <modify_commandline_options>: Add dataset-specific options and rewrite default values for existing options.
|
10 |
+
-- <__init__>: Initialize this dataset class.
|
11 |
+
-- <__getitem__>: Return a data point and its metadata information.
|
12 |
+
-- <__len__>: Return the number of images.
|
13 |
+
"""
|
14 |
+
from data.base_dataset import BaseDataset, get_transform
|
15 |
+
# from data.image_folder import make_dataset
|
16 |
+
# from PIL import Image
|
17 |
+
|
18 |
+
|
19 |
+
class TemplateDataset(BaseDataset):
|
20 |
+
"""A template dataset class for you to implement custom datasets."""
|
21 |
+
@staticmethod
|
22 |
+
def modify_commandline_options(parser, is_train):
|
23 |
+
"""Add new dataset-specific options, and rewrite default values for existing options.
|
24 |
+
|
25 |
+
Parameters:
|
26 |
+
parser -- original option parser
|
27 |
+
is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options.
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
the modified parser.
|
31 |
+
"""
|
32 |
+
parser.add_argument('--new_dataset_option', type=float, default=1.0, help='new dataset option')
|
33 |
+
parser.set_defaults(max_dataset_size=10, new_dataset_option=2.0) # specify dataset-specific default values
|
34 |
+
return parser
|
35 |
+
|
36 |
+
def __init__(self, opt):
|
37 |
+
"""Initialize this dataset class.
|
38 |
+
|
39 |
+
Parameters:
|
40 |
+
opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions
|
41 |
+
|
42 |
+
A few things can be done here.
|
43 |
+
- save the options (have been done in BaseDataset)
|
44 |
+
- get image paths and meta information of the dataset.
|
45 |
+
- define the image transformation.
|
46 |
+
"""
|
47 |
+
# save the option and dataset root
|
48 |
+
BaseDataset.__init__(self, opt)
|
49 |
+
# get the image paths of your dataset;
|
50 |
+
self.image_paths = [] # You can call sorted(make_dataset(self.root, opt.max_dataset_size)) to get all the image paths under the directory self.root
|
51 |
+
# define the default transform function. You can use <base_dataset.get_transform>; You can also define your custom transform function
|
52 |
+
self.transform = get_transform(opt)
|
53 |
+
|
54 |
+
def __getitem__(self, index):
|
55 |
+
"""Return a data point and its metadata information.
|
56 |
+
|
57 |
+
Parameters:
|
58 |
+
index -- a random integer for data indexing
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
a dictionary of data with their names. It usually contains the data itself and its metadata information.
|
62 |
+
|
63 |
+
Step 1: get a random image path: e.g., path = self.image_paths[index]
|
64 |
+
Step 2: load your data from the disk: e.g., image = Image.open(path).convert('RGB').
|
65 |
+
Step 3: convert your data to a PyTorch tensor. You can use helpder functions such as self.transform. e.g., data = self.transform(image)
|
66 |
+
Step 4: return a data point as a dictionary.
|
67 |
+
"""
|
68 |
+
path = 'temp' # needs to be a string
|
69 |
+
data_A = None # needs to be a tensor
|
70 |
+
data_B = None # needs to be a tensor
|
71 |
+
return {'data_A': data_A, 'data_B': data_B, 'path': path}
|
72 |
+
|
73 |
+
def __len__(self):
|
74 |
+
"""Return the total number of images."""
|
75 |
+
return len(self.image_paths)
|
src/face3d/extract_kp_videos.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import time
|
4 |
+
import glob
|
5 |
+
import argparse
|
6 |
+
import face_alignment
|
7 |
+
import numpy as np
|
8 |
+
from PIL import Image
|
9 |
+
from tqdm import tqdm
|
10 |
+
from itertools import cycle
|
11 |
+
|
12 |
+
from torch.multiprocessing import Pool, Process, set_start_method
|
13 |
+
|
14 |
+
class KeypointExtractor():
|
15 |
+
def __init__(self):
|
16 |
+
self.detector = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D)
|
17 |
+
|
18 |
+
def extract_keypoint(self, images, name=None, info=True):
|
19 |
+
if isinstance(images, list):
|
20 |
+
keypoints = []
|
21 |
+
if info:
|
22 |
+
i_range = tqdm(images,desc='landmark Det:')
|
23 |
+
else:
|
24 |
+
i_range = images
|
25 |
+
|
26 |
+
for image in i_range:
|
27 |
+
current_kp = self.extract_keypoint(image)
|
28 |
+
if np.mean(current_kp) == -1 and keypoints:
|
29 |
+
keypoints.append(keypoints[-1])
|
30 |
+
else:
|
31 |
+
keypoints.append(current_kp[None])
|
32 |
+
|
33 |
+
keypoints = np.concatenate(keypoints, 0)
|
34 |
+
np.savetxt(os.path.splitext(name)[0]+'.txt', keypoints.reshape(-1))
|
35 |
+
return keypoints
|
36 |
+
else:
|
37 |
+
while True:
|
38 |
+
try:
|
39 |
+
keypoints = self.detector.get_landmarks_from_image(np.array(images))[0]
|
40 |
+
break
|
41 |
+
except RuntimeError as e:
|
42 |
+
if str(e).startswith('CUDA'):
|
43 |
+
print("Warning: out of memory, sleep for 1s")
|
44 |
+
time.sleep(1)
|
45 |
+
else:
|
46 |
+
print(e)
|
47 |
+
break
|
48 |
+
except TypeError:
|
49 |
+
print('No face detected in this image')
|
50 |
+
shape = [68, 2]
|
51 |
+
keypoints = -1. * np.ones(shape)
|
52 |
+
break
|
53 |
+
if name is not None:
|
54 |
+
np.savetxt(os.path.splitext(name)[0]+'.txt', keypoints.reshape(-1))
|
55 |
+
return keypoints
|
56 |
+
|
57 |
+
def read_video(filename):
|
58 |
+
frames = []
|
59 |
+
cap = cv2.VideoCapture(filename)
|
60 |
+
while cap.isOpened():
|
61 |
+
ret, frame = cap.read()
|
62 |
+
if ret:
|
63 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
64 |
+
frame = Image.fromarray(frame)
|
65 |
+
frames.append(frame)
|
66 |
+
else:
|
67 |
+
break
|
68 |
+
cap.release()
|
69 |
+
return frames
|
70 |
+
|
71 |
+
def run(data):
|
72 |
+
filename, opt, device = data
|
73 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = device
|
74 |
+
kp_extractor = KeypointExtractor()
|
75 |
+
images = read_video(filename)
|
76 |
+
name = filename.split('/')[-2:]
|
77 |
+
os.makedirs(os.path.join(opt.output_dir, name[-2]), exist_ok=True)
|
78 |
+
kp_extractor.extract_keypoint(
|
79 |
+
images,
|
80 |
+
name=os.path.join(opt.output_dir, name[-2], name[-1])
|
81 |
+
)
|
82 |
+
|
83 |
+
if __name__ == '__main__':
|
84 |
+
set_start_method('spawn')
|
85 |
+
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
86 |
+
parser.add_argument('--input_dir', type=str, help='the folder of the input files')
|
87 |
+
parser.add_argument('--output_dir', type=str, help='the folder of the output files')
|
88 |
+
parser.add_argument('--device_ids', type=str, default='0,1')
|
89 |
+
parser.add_argument('--workers', type=int, default=4)
|
90 |
+
|
91 |
+
opt = parser.parse_args()
|
92 |
+
filenames = list()
|
93 |
+
VIDEO_EXTENSIONS_LOWERCASE = {'mp4'}
|
94 |
+
VIDEO_EXTENSIONS = VIDEO_EXTENSIONS_LOWERCASE.union({f.upper() for f in VIDEO_EXTENSIONS_LOWERCASE})
|
95 |
+
extensions = VIDEO_EXTENSIONS
|
96 |
+
|
97 |
+
for ext in extensions:
|
98 |
+
os.listdir(f'{opt.input_dir}')
|
99 |
+
print(f'{opt.input_dir}/*.{ext}')
|
100 |
+
filenames = sorted(glob.glob(f'{opt.input_dir}/*.{ext}'))
|
101 |
+
print('Total number of videos:', len(filenames))
|
102 |
+
pool = Pool(opt.workers)
|
103 |
+
args_list = cycle([opt])
|
104 |
+
device_ids = opt.device_ids.split(",")
|
105 |
+
device_ids = cycle(device_ids)
|
106 |
+
for data in tqdm(pool.imap_unordered(run, zip(filenames, args_list, device_ids))):
|
107 |
+
None
|
src/face3d/models/__init__.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""This package contains modules related to objective functions, optimizations, and network architectures.
|
2 |
+
|
3 |
+
To add a custom model class called 'dummy', you need to add a file called 'dummy_model.py' and define a subclass DummyModel inherited from BaseModel.
|
4 |
+
You need to implement the following five functions:
|
5 |
+
-- <__init__>: initialize the class; first call BaseModel.__init__(self, opt).
|
6 |
+
-- <set_input>: unpack data from dataset and apply preprocessing.
|
7 |
+
-- <forward>: produce intermediate results.
|
8 |
+
-- <optimize_parameters>: calculate loss, gradients, and update network weights.
|
9 |
+
-- <modify_commandline_options>: (optionally) add model-specific options and set default options.
|
10 |
+
|
11 |
+
In the function <__init__>, you need to define four lists:
|
12 |
+
-- self.loss_names (str list): specify the training losses that you want to plot and save.
|
13 |
+
-- self.model_names (str list): define networks used in our training.
|
14 |
+
-- self.visual_names (str list): specify the images that you want to display and save.
|
15 |
+
-- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an usage.
|
16 |
+
|
17 |
+
Now you can use the model class by specifying flag '--model dummy'.
|
18 |
+
See our template model class 'template_model.py' for more details.
|
19 |
+
"""
|
20 |
+
|
21 |
+
import importlib
|
22 |
+
from src.face3d.models.base_model import BaseModel
|
23 |
+
|
24 |
+
|
25 |
+
def find_model_using_name(model_name):
|
26 |
+
"""Import the module "models/[model_name]_model.py".
|
27 |
+
|
28 |
+
In the file, the class called DatasetNameModel() will
|
29 |
+
be instantiated. It has to be a subclass of BaseModel,
|
30 |
+
and it is case-insensitive.
|
31 |
+
"""
|
32 |
+
model_filename = "face3d.models." + model_name + "_model"
|
33 |
+
modellib = importlib.import_module(model_filename)
|
34 |
+
model = None
|
35 |
+
target_model_name = model_name.replace('_', '') + 'model'
|
36 |
+
for name, cls in modellib.__dict__.items():
|
37 |
+
if name.lower() == target_model_name.lower() \
|
38 |
+
and issubclass(cls, BaseModel):
|
39 |
+
model = cls
|
40 |
+
|
41 |
+
if model is None:
|
42 |
+
print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name))
|
43 |
+
exit(0)
|
44 |
+
|
45 |
+
return model
|
46 |
+
|
47 |
+
|
48 |
+
def get_option_setter(model_name):
|
49 |
+
"""Return the static method <modify_commandline_options> of the model class."""
|
50 |
+
model_class = find_model_using_name(model_name)
|
51 |
+
return model_class.modify_commandline_options
|
52 |
+
|
53 |
+
|
54 |
+
def create_model(opt):
|
55 |
+
"""Create a model given the option.
|
56 |
+
|
57 |
+
This function warps the class CustomDatasetDataLoader.
|
58 |
+
This is the main interface between this package and 'train.py'/'test.py'
|
59 |
+
|
60 |
+
Example:
|
61 |
+
>>> from models import create_model
|
62 |
+
>>> model = create_model(opt)
|
63 |
+
"""
|
64 |
+
model = find_model_using_name(opt.model)
|
65 |
+
instance = model(opt)
|
66 |
+
print("model [%s] was created" % type(instance).__name__)
|
67 |
+
return instance
|