File size: 2,764 Bytes
f15b4fe
 
9e9b8c5
fad0c74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bc25a6
 
 
 
887ecc1
7db4531
887ecc1
9bc25a6
887ecc1
f15b4fe
3f8e55d
 
12ab3b2
18d19c8
12ab3b2
7db4531
887ecc1
7db4531
9bc25a6
 
02cdfb8
9e9b8c5
9bc25a6
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
import streamlit as st
from PIL import Image
import inference
from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image
import requests
import copy
import os
from unittest.mock import patch
from transformers.dynamic_module_utils import get_imports
import torch

#remove flash_attn for load model in cpu
def fixed_get_imports(filename: str | os.PathLike) -> list[str]:
    if not str(filename).endswith("modeling_florence2.py"):
        return get_imports(filename)
    imports = get_imports(filename)
    imports.remove("flash_attn")
    return imports

# Initialize session state for model loading and to block re-running
if 'model_loaded' not in st.session_state:
    st.session_state.model_loaded = False

# Function to load the model (e.g., Florence-2 model)
def load_model():
    # Simulate model loading process
    model_id = "microsoft/Florence-2-large"
    #processor loading
    st.session_state.processor = AutoProcessor.from_pretrained(model_id, torch_dtype=torch.qint8, trust_remote_code=True)
    
    # Load the model normally
    with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports):  # workaround for unnecessary flash_attn requirement
        model = AutoModelForCausalLM.from_pretrained(model_id, attn_implementation="sdpa", trust_remote_code=True)
    
    # Apply dynamic quantization
    Qmodel = torch.quantization.quantize_dynamic(
        model, {torch.nn.Linear}, dtype=torch.qint8
    )
    del model
    st.session_state.model = Qmodel
    st.session_state.model_loaded = True
    st.write("model loaded complete")
# Load the model only once
if not st.session_state.model_loaded:
    with st.spinner('Loading model...'):
        load_model()


# Initialize session state to block re-running
if 'has_run' not in st.session_state:
    st.session_state.has_run = False

# Main UI container
st.markdown('<h3><center><b>VQA</b></center></h3>', unsafe_allow_html=True)
# Image upload area
uploaded_image = st.sidebar.file_uploader("Upload your image here", type=["jpg", "jpeg", "png"])
# Display the uploaded image and process it if available
if uploaded_image is not None:
    image = Image.open(uploaded_image)
    st.image(image, caption="Uploaded Image", use_column_width=True)
    # Task prompt input
    task_prompt = st.sidebar.text_input("Task Prompt", value="Describe the image in detail:")
    # Additional text input (optional)
    text_input = st.sidebar.text_area("Input Questions", height=20)
    # Generate Caption button
    if st.sidebar.button("Generate Caption", key="Generate") and not st.session_state.has_run:
        # Mark that the script has been run
        st.session_state.has_run = True
        st.write(task_prompt,"\n\n",text_input)
        inference.demo()