Spaces:
Running
Running
vishalkatheriya18
commited on
Commit
•
0bb757b
1
Parent(s):
2a803fa
Update app.py
Browse files
app.py
CHANGED
@@ -16,60 +16,81 @@ if 'models_loaded' not in st.session_state:
|
|
16 |
st.session_state.models_loaded = True
|
17 |
|
18 |
# Define image processing and classification functions
|
19 |
-
def
|
20 |
-
|
21 |
-
st.write(encoding)
|
22 |
-
return encoding
|
23 |
-
|
24 |
-
def topwear(encoding):
|
25 |
outputs = st.session_state.top_wear_model(**encoding)
|
26 |
-
|
|
|
|
|
27 |
return st.session_state.top_wear_model.config.id2label[predicted_class_idx]
|
28 |
|
29 |
-
def patterns(encoding):
|
|
|
30 |
outputs = st.session_state.pattern_model(**encoding)
|
31 |
-
|
|
|
|
|
32 |
return st.session_state.pattern_model.config.id2label[predicted_class_idx]
|
33 |
|
34 |
-
def prints(encoding):
|
|
|
35 |
outputs = st.session_state.print_model(**encoding)
|
36 |
-
|
|
|
|
|
37 |
return st.session_state.print_model.config.id2label[predicted_class_idx]
|
38 |
|
39 |
-
def sleevelengths(encoding):
|
|
|
40 |
outputs = st.session_state.sleeve_length_model(**encoding)
|
41 |
-
|
|
|
|
|
42 |
return st.session_state.sleeve_length_model.config.id2label[predicted_class_idx]
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
# Run all models in parallel
|
45 |
-
def pipes(
|
46 |
-
|
|
|
47 |
|
|
|
48 |
results = [None] * 4
|
49 |
|
50 |
-
|
51 |
-
results[index] = func(encoding)
|
52 |
-
|
53 |
threads = [
|
54 |
-
threading.Thread(target=
|
55 |
-
threading.Thread(target=
|
56 |
-
threading.Thread(target=
|
57 |
-
threading.Thread(target=
|
58 |
]
|
59 |
|
|
|
60 |
for thread in threads:
|
61 |
thread.start()
|
|
|
|
|
62 |
for thread in threads:
|
63 |
thread.join()
|
64 |
|
65 |
-
|
66 |
-
|
|
|
67 |
"pattern": results[1],
|
68 |
"print": results[2],
|
69 |
"sleeve_length": results[3]
|
70 |
}
|
71 |
|
72 |
-
return
|
73 |
|
74 |
# Streamlit app UI
|
75 |
st.title("Clothing Classification Pipeline")
|
@@ -79,12 +100,13 @@ if url:
|
|
79 |
response = requests.get(url)
|
80 |
if response.status_code == 200:
|
81 |
image = Image.open(BytesIO(response.content))
|
|
|
82 |
st.image(image.resize((200, 200)), caption="Uploaded Image", use_column_width=False)
|
83 |
|
84 |
start_time = time.time()
|
85 |
|
86 |
try:
|
87 |
-
result = pipes(
|
88 |
st.write("Classification Results (JSON):")
|
89 |
st.json(result) # Display results in JSON format
|
90 |
st.write(f"Time taken: {time.time() - start_time:.2f} seconds")
|
|
|
16 |
st.session_state.models_loaded = True
|
17 |
|
18 |
# Define image processing and classification functions
|
19 |
+
def topwear(encoding,top_wear_model):
|
20 |
+
# Make prediction
|
|
|
|
|
|
|
|
|
21 |
outputs = st.session_state.top_wear_model(**encoding)
|
22 |
+
logits = outputs.logits
|
23 |
+
predicted_class_idx = logits.argmax(-1).item()
|
24 |
+
# Print the result
|
25 |
return st.session_state.top_wear_model.config.id2label[predicted_class_idx]
|
26 |
|
27 |
+
def patterns(encoding,pattern_model):
|
28 |
+
# Make prediction
|
29 |
outputs = st.session_state.pattern_model(**encoding)
|
30 |
+
logits = outputs.logits
|
31 |
+
predicted_class_idx = logits.argmax(-1).item()
|
32 |
+
# Print the result
|
33 |
return st.session_state.pattern_model.config.id2label[predicted_class_idx]
|
34 |
|
35 |
+
def prints(encoding,print_model):
|
36 |
+
# Make prediction
|
37 |
outputs = st.session_state.print_model(**encoding)
|
38 |
+
logits = outputs.logits
|
39 |
+
predicted_class_idx = logits.argmax(-1).item()
|
40 |
+
# Print the result
|
41 |
return st.session_state.print_model.config.id2label[predicted_class_idx]
|
42 |
|
43 |
+
def sleevelengths(encoding,sleeve_length_model):
|
44 |
+
# Make prediction
|
45 |
outputs = st.session_state.sleeve_length_model(**encoding)
|
46 |
+
logits = outputs.logits
|
47 |
+
predicted_class_idx = logits.argmax(-1).item()
|
48 |
+
# Print the result
|
49 |
return st.session_state.sleeve_length_model.config.id2label[predicted_class_idx]
|
50 |
|
51 |
+
def imageprocessing(url):
|
52 |
+
response = requests.get(url)
|
53 |
+
if response.status_code == 200:
|
54 |
+
image = Image.open(BytesIO(response.content))
|
55 |
+
encoding = image_processor(image.convert("RGB"), return_tensors="pt")
|
56 |
+
return encoding
|
57 |
+
|
58 |
+
# Define the function that will be used in each thread
|
59 |
+
def call_model(func, encoding, model, results, index):
|
60 |
+
results[index] = func(encoding, model)
|
61 |
# Run all models in parallel
|
62 |
+
def pipes(imagepath):
|
63 |
+
# Process the image once and reuse the encoding
|
64 |
+
encoding = imageprocessing(imagepath)
|
65 |
|
66 |
+
# Prepare a list to store the results from each thread
|
67 |
results = [None] * 4
|
68 |
|
69 |
+
# Create threads for each function call
|
|
|
|
|
70 |
threads = [
|
71 |
+
threading.Thread(target=call_model, args=(topwear, encoding, top_wear_model, results, 0)),
|
72 |
+
threading.Thread(target=call_model, args=(patterns, encoding, pattern_model, results, 1)),
|
73 |
+
threading.Thread(target=call_model, args=(prints, encoding, print_model, results, 2)),
|
74 |
+
threading.Thread(target=call_model, args=(sleevelengths, encoding, sleeve_length_model, results, 3)),
|
75 |
]
|
76 |
|
77 |
+
# Start all threads
|
78 |
for thread in threads:
|
79 |
thread.start()
|
80 |
+
|
81 |
+
# Wait for all threads to finish
|
82 |
for thread in threads:
|
83 |
thread.join()
|
84 |
|
85 |
+
# Combine the results into a dictionary
|
86 |
+
dicts = {
|
87 |
+
"top": results[0],
|
88 |
"pattern": results[1],
|
89 |
"print": results[2],
|
90 |
"sleeve_length": results[3]
|
91 |
}
|
92 |
|
93 |
+
return dicts
|
94 |
|
95 |
# Streamlit app UI
|
96 |
st.title("Clothing Classification Pipeline")
|
|
|
100 |
response = requests.get(url)
|
101 |
if response.status_code == 200:
|
102 |
image = Image.open(BytesIO(response.content))
|
103 |
+
encoding = image_processor(image.convert("RGB"), return_tensors="pt")
|
104 |
st.image(image.resize((200, 200)), caption="Uploaded Image", use_column_width=False)
|
105 |
|
106 |
start_time = time.time()
|
107 |
|
108 |
try:
|
109 |
+
result = pipes(url)
|
110 |
st.write("Classification Results (JSON):")
|
111 |
st.json(result) # Display results in JSON format
|
112 |
st.write(f"Time taken: {time.time() - start_time:.2f} seconds")
|