Spaces:
Running
Running
vishalkatheriya18
commited on
Commit
•
2c867d4
1
Parent(s):
0bb757b
Update app.py
Browse files
app.py
CHANGED
@@ -16,62 +16,52 @@ if 'models_loaded' not in st.session_state:
|
|
16 |
st.session_state.models_loaded = True
|
17 |
|
18 |
# Define image processing and classification functions
|
19 |
-
def topwear(encoding
|
20 |
-
# Make prediction
|
21 |
outputs = st.session_state.top_wear_model(**encoding)
|
22 |
logits = outputs.logits
|
23 |
predicted_class_idx = logits.argmax(-1).item()
|
24 |
-
# Print the result
|
25 |
return st.session_state.top_wear_model.config.id2label[predicted_class_idx]
|
26 |
|
27 |
-
def patterns(encoding
|
28 |
-
# Make prediction
|
29 |
outputs = st.session_state.pattern_model(**encoding)
|
30 |
logits = outputs.logits
|
31 |
predicted_class_idx = logits.argmax(-1).item()
|
32 |
-
# Print the result
|
33 |
return st.session_state.pattern_model.config.id2label[predicted_class_idx]
|
34 |
|
35 |
-
def prints(encoding
|
36 |
-
# Make prediction
|
37 |
outputs = st.session_state.print_model(**encoding)
|
38 |
logits = outputs.logits
|
39 |
predicted_class_idx = logits.argmax(-1).item()
|
40 |
-
# Print the result
|
41 |
return st.session_state.print_model.config.id2label[predicted_class_idx]
|
42 |
|
43 |
-
def sleevelengths(encoding
|
44 |
-
# Make prediction
|
45 |
outputs = st.session_state.sleeve_length_model(**encoding)
|
46 |
logits = outputs.logits
|
47 |
predicted_class_idx = logits.argmax(-1).item()
|
48 |
-
# Print the result
|
49 |
return st.session_state.sleeve_length_model.config.id2label[predicted_class_idx]
|
50 |
|
51 |
-
def imageprocessing(
|
52 |
-
|
53 |
-
if response.status_code == 200:
|
54 |
-
image = Image.open(BytesIO(response.content))
|
55 |
-
encoding = image_processor(image.convert("RGB"), return_tensors="pt")
|
56 |
return encoding
|
57 |
-
|
58 |
# Define the function that will be used in each thread
|
59 |
-
def call_model(func, encoding,
|
60 |
-
results[index] = func(encoding
|
|
|
61 |
# Run all models in parallel
|
62 |
-
def pipes(
|
63 |
# Process the image once and reuse the encoding
|
64 |
-
encoding = imageprocessing(
|
65 |
|
66 |
# Prepare a list to store the results from each thread
|
67 |
results = [None] * 4
|
68 |
|
69 |
# Create threads for each function call
|
70 |
threads = [
|
71 |
-
threading.Thread(target=call_model, args=(topwear, encoding,
|
72 |
-
threading.Thread(target=call_model, args=(patterns, encoding,
|
73 |
-
threading.Thread(target=call_model, args=(prints, encoding,
|
74 |
-
threading.Thread(target=call_model, args=(sleevelengths, encoding,
|
75 |
]
|
76 |
|
77 |
# Start all threads
|
@@ -97,20 +87,19 @@ st.title("Clothing Classification Pipeline")
|
|
97 |
|
98 |
url = st.text_input("Paste image URL here...")
|
99 |
if url:
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
result = pipes(url)
|
110 |
st.write("Classification Results (JSON):")
|
111 |
st.json(result) # Display results in JSON format
|
112 |
st.write(f"Time taken: {time.time() - start_time:.2f} seconds")
|
113 |
-
|
114 |
-
st.error(
|
115 |
-
|
116 |
-
st.error("
|
|
|
16 |
st.session_state.models_loaded = True
|
17 |
|
18 |
# Define image processing and classification functions
|
19 |
+
def topwear(encoding):
|
|
|
20 |
outputs = st.session_state.top_wear_model(**encoding)
|
21 |
logits = outputs.logits
|
22 |
predicted_class_idx = logits.argmax(-1).item()
|
|
|
23 |
return st.session_state.top_wear_model.config.id2label[predicted_class_idx]
|
24 |
|
25 |
+
def patterns(encoding):
|
|
|
26 |
outputs = st.session_state.pattern_model(**encoding)
|
27 |
logits = outputs.logits
|
28 |
predicted_class_idx = logits.argmax(-1).item()
|
|
|
29 |
return st.session_state.pattern_model.config.id2label[predicted_class_idx]
|
30 |
|
31 |
+
def prints(encoding):
|
|
|
32 |
outputs = st.session_state.print_model(**encoding)
|
33 |
logits = outputs.logits
|
34 |
predicted_class_idx = logits.argmax(-1).item()
|
|
|
35 |
return st.session_state.print_model.config.id2label[predicted_class_idx]
|
36 |
|
37 |
+
def sleevelengths(encoding):
|
|
|
38 |
outputs = st.session_state.sleeve_length_model(**encoding)
|
39 |
logits = outputs.logits
|
40 |
predicted_class_idx = logits.argmax(-1).item()
|
|
|
41 |
return st.session_state.sleeve_length_model.config.id2label[predicted_class_idx]
|
42 |
|
43 |
+
def imageprocessing(image):
|
44 |
+
encoding = st.session_state.image_processor(image.convert("RGB"), return_tensors="pt")
|
|
|
|
|
|
|
45 |
return encoding
|
46 |
+
|
47 |
# Define the function that will be used in each thread
|
48 |
+
def call_model(func, encoding, results, index):
|
49 |
+
results[index] = func(encoding)
|
50 |
+
|
51 |
# Run all models in parallel
|
52 |
+
def pipes(image):
|
53 |
# Process the image once and reuse the encoding
|
54 |
+
encoding = imageprocessing(image)
|
55 |
|
56 |
# Prepare a list to store the results from each thread
|
57 |
results = [None] * 4
|
58 |
|
59 |
# Create threads for each function call
|
60 |
threads = [
|
61 |
+
threading.Thread(target=call_model, args=(topwear, encoding, results, 0)),
|
62 |
+
threading.Thread(target=call_model, args=(patterns, encoding, results, 1)),
|
63 |
+
threading.Thread(target=call_model, args=(prints, encoding, results, 2)),
|
64 |
+
threading.Thread(target=call_model, args=(sleevelengths, encoding, results, 3)),
|
65 |
]
|
66 |
|
67 |
# Start all threads
|
|
|
87 |
|
88 |
url = st.text_input("Paste image URL here...")
|
89 |
if url:
|
90 |
+
try:
|
91 |
+
response = requests.get(url)
|
92 |
+
if response.status_code == 200:
|
93 |
+
image = Image.open(BytesIO(response.content))
|
94 |
+
st.image(image.resize((200, 200)), caption="Uploaded Image", use_column_width=False)
|
95 |
+
|
96 |
+
start_time = time.time()
|
97 |
+
|
98 |
+
result = pipes(image)
|
|
|
99 |
st.write("Classification Results (JSON):")
|
100 |
st.json(result) # Display results in JSON format
|
101 |
st.write(f"Time taken: {time.time() - start_time:.2f} seconds")
|
102 |
+
else:
|
103 |
+
st.error("Failed to load image from URL. Please check the URL.")
|
104 |
+
except Exception as e:
|
105 |
+
st.error(f"Error processing the image: {str(e)}")
|