import streamlit as st from ultralytics import YOLO from PIL import Image import requests from io import BytesIO import time # Load the YOLO model only once using Streamlit session state if 'models_loaded' not in st.session_state: st.session_state.yolo_model = YOLO('best.pt') # Update with your model path st.session_state.models_loaded = True # Define function for inference using YOLO def predict_with_yolo(image): # Run inference on the image using the YOLO model results = st.session_state.yolo_model(image) # Print the classification results if results: # YOLOv8 classification results contain label and confidence for the whole image for result in results: return { "Class": result.names[result.probs.top1], "Confidence": float(result.probs.top1conf) # Convert confidence to float } else: st.warning("No classification results found.") return None # Streamlit app UI st.title("Clothing Detection with YOLO") url = st.text_input("Paste image URL here...") if url: try: response = requests.get(url) if response.status_code == 200: image = Image.open(BytesIO(response.content)).convert('RGB') st.image(image.resize((200, 200)), caption="Uploaded Image", use_column_width=False) start_time = time.time() image_resized = image.resize((224, 224)) # Predict using YOLO predictions = predict_with_yolo(image_resized) # Display predictions if predictions: st.write("Predictions:", predictions) else: st.write("No objects detected.") st.write(f"Time taken: {time.time() - start_time:.2f} seconds") else: st.error("Failed to load image from URL. Please check the URL.") except Exception as e: st.error(f"Error processing the image: {str(e)}")